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I. INTRODUCTION 

Contingency tables (or cross tables) classify elements of popu1ations 

or samples (of varying kinds) with reference to one or more charac

teristics. For instance, classification of fatalities for a year 

according to age and mode of road usage. If there is only one 

characteristic, one often speaks of marginal tables. But this is 

also said of tables originating if one or more variables of a con

tingency table are added and one or more others are not. Since there 

is no essential difference between a marginal table and a contingency 

table (merely a functional difference), our future references will be 

to contingency tables. 

The term "contingency table" is better than "cross table", because 

it expresses something of the assumptions made in cross-table analy

sis as regards the contingent factors assumed to play a part in 

creating the table. This aspect is essential in sampling. 

By means of a sample we try on the one hand to describe the population 

from which the sample is taken, and on the other to verify opinions 

about this population. The models of analysis described below assume 

that a sample gives a more or less correct picture of the population, 

dependent only on random fluctuations. 

Assumptions regarding the way chance plays a part form the basis of 

the model of analysis. Within it, different model specifications are 

again possible. 

Analysis of contingency tables does not usually assume that there 

are specific relations (such as order relations or even metric re

lations) between the classes of a characteristic. 

Such extra assumptions are possible, however, within specific models, 

for instance for a variable such as age. 

In recent years there has been a new development ~n the way in which 

contingency tables are analysed. While it used to be customary (mostly 

by the Chi-squared test) to verify overall-hypotheses about a table 

with either one or two characteristics, analysis now increasingly 

stresses the detailed information the table contains. Furthermore, 

it is also possible to analyse higer-order tables (subdivided into 

a numer of characteristics), in order that more complex relationships, 

i.e. relations between more than two characteristics at once, can be 

investigated. 



-4-

2. MODEL 

2.1. Fundamental assumption 

The fundamental assumption is that the number of accidents in the 

cells of the contingency table are independent random variables with 

a Poisson distribution, in which the Poisson distribution parameters 

may differ. To keep this fairly concrete: if we are concerned with a 

two-way table with r rows and k columns, then we could write the 

Poisson assumption for each cell as follows: 

there are numbers A .. ~O (i = 1, .• , r; j = 1, .• , k) such that: 
~J 

prob l,....X •• 
"'~J 

-A .. 
e ~J 

'\ x .. 
A·· ~J 

J,l 

x ... ! 
~J 

In this, X .. is the stochastic variable of cell (i,j) which can 
..v~J 

assume as values the natural numbers x .. = 0,1,2, ••• A briefer 
~J 

way of writing this assumption is: 

X .. rv -p (i\ .. ), 
",~J ~J 

which we can read as: 

meter .x ... 
X .. has a Poisson distribution with a para
"'~J 

~J 

2.2. Independence assumptions regarding characteristics in models 

Although we assume that the X .. are independent, it is of course 
tV~J 

possible that there exist relations between parameters A ... By 
~J 

investigating the relations between these parameters we can examine 

whether the characteristics the variables possess are also indepen

dent. What do we mean when we say that the rows and columns of an r x k 

contingency table (with independent Poisson variables 

to independent row and column variables? Suppose 

the marginal distributions, viz: 

X. 
"'~ . 

X .. ) correspond 
..v~J 

and X . are 
N.J 



X. 
""~ . 

and 

x . 
",. J 

t 
j=l 

r 

=L 
i=1 

X •• 
N~J 

X .• 
""~J 
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The requirement that the row and column variables must be independent 

means that the chances of the r conditional distributions within rows: 

prob [ (X· 1 = x· i ) 1\ (X· 2 "'~ ~ "V~ 
x·

2
) 1\ •.. 1\ (X.

k ~ ""~ IX. = x .• ] 
"'~ . ~ 

are the same for all i=I, ••• , r, and that the k conditional 

distributions within columns: 

prob L-(Xl· = xl·) 1\ (X
2

· = x
2

·) 1\ ... 1\ (X . = X .) 
f\J J J '" J J ",rJ rJ I X • = x .l IV.J .JJ 

are the same for all j=I, •.• , k. Using the independence of the 

X .. and the Poisson assumption, we can infer that the conditional 
"'~J 
distributions within rows are the same as the multinomial distributions: 

x. ! 
~. 

*, x .. ! . 
j= I ~J 

while the conditional distributions within columns are the same as the 

multinomial distributions: 

x .! 
• J 

x .. ! 
~J 

\ )X .. 1\ • • ~J 
~J 

J\. • J 
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The row and column variables are thus independent when 

same for all j, and ( ~ij)iS the same for all i. 

A.J 
Necessary and sufficient conditions for this are that there are 

numbers ai ~ 0 

A .. = m a. b. 

(i=I, •. ,r), b.~O (j=I, .• ,k), and m ·~O, such that 
J 

~J ~ J 
for all i,j. 

This multiplicative model is mostly converted into a linear model by 

taking the logarithm: 

I n ~ ij = r + O(i + ~ j 

in which (X • 
~ 

In a and so on. 
i 

(I) 

Hence, such models are also called log-linear models. The log-linear 

model (I) is therefore equivalent with the requirement of indepen

dence of the row and column variables. 

2.3. Saturated and unsaturated models 

As stated, in addition to testing hypotheses regarding tables, de

scription of the tables is sometimes also required. If the character

istics are not independent and the above model (I) does not there

fore apply, it can be extended with specific parameters for the cells. 

In that case we have the following model 

In A .. =M+Oi..+,.,.+l" .. 
~J ( ~ J ~J 

(2) 

With regard to this model it is always possible to find such parameters 

.AA , 0<.., Il.. and Y •• that there is complete agreement between the 
/ ~ I' J lJ ~J 

table one wishes to describe and the model used for description. The 

significance of the description is that the variation in the numbers 

of observations of the cells in the table is shown in relation to the 

structure of the table: it can be seen, for instance, to what extent 

the variation results from a row-effect, a column-effect or an inter

action effect. Although there are now as many parameters as cells and 
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hence there is no reduction in information, there is an ordering of 

information. Moreover, note that model (1) is a special case of model 

(2); it is the same, except for the restriction that V .. = 0 for all 
\) ~J 

i, j. Other restrictions are also possible, for instance that the 

ex . 's together form a linear relation or, for example, are equal 
~ 

to zero. In all such cases we speak of unsaturated models. If we are 

dealing with a sample, these non-saturated models can be regarded as 

verifiable hypotheses regarding the population from which the sample 

originates. With a saturated model, such verification is not possible 

because the model fully describes the data. 

As regards the choice of the model of analysis, there is close agreement 

with linear models as used in analysis of variance. Here, again, we 

can speak of a breakdown of the table into components: how great is the 

row-contribution, the column-contribution, the unique cell contribution 

of each cell? For an incidental table this can be examined by estimating 

the parameters of the model. 

This systematic breakdown therefore provides an efficient review of 

the information contained in the table. It is also possible to give 

confidence limits of the estimators for the parameters, so that veri

fication of individual estimators is also possible. 

A good description of the relation between analysis of variance models 

and log-linear models is given bij Nelder & Wedderburn (1972). 

2.4. Weighted Poisson models 

So far we treated only the numbers of accidents as a function of a 

number of characteristics. But we are sometimes interested in analy

sing accident figures normalised for a given exposure factor such 

as number of inhabitants, road lengths, and so on. If we enter the 

numbers of accidents in the table with a measure of exposure per cell, 

which may differ from cell to cell, we can use a more general Poisson 

model. The fundamental assumption now becomes 

X •• 'V -p ( e .. i\ .. ), 
N~J ~J ~J 

in which the e .. are the given exposure factors, and in which a 
~J 

log-linear model is again assumed for the A ... 
~J 
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3. THE DESIGN MATRIX 

3. I. General 

In matrix notation, the general form of a log-linear model for n 

Poisson variables ~tV peAl) can be written as 

Y?, V9, 

in which "L is a vector of values i1; I = In A I' V is a given matrix 

of the order n x p (known as the design matrix), and 9 a vector of 

p unknown parameters. If the ~l are arranged in a two-way table and 

if we replace the index I by the row and column indices i and 

j, then we can rewrite the model 

'1. ij In A.. = M + IX. + ~. 
~J I ~ J 

when r k 2, for instance as 

~II 0 0 .M 

t7, 21 0 0 0(1 

VL 12 0 0 0(2 

"." 22 0 0 f.>1 

f->2 

Note that in this case the design matrix V is of the order 4 x 5 

and rank 3. This become clear if we rewrite the model in the equiv

alent form: 

Y"L I I 

11 21 

~ 12 

'1 22 

with: 

-I 

-I 

9
1 

9
2 

-I 

-I 9
3 
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e
l 

= + \X+ ~ 
e

2 
= (0(1 - 0<. ) = - (0\ - 0<. ) 

2 
e

3 
= (rl -r) - (~2 - ~ ) 

in which 0<. and (b respectively are the means of the 0<. 's and ~ 's. 

Generally, it is always possible (and advisable) to choose the 

design matrix so that its rank is the same as its number of columns. 

This obviates having to impose extra restrictions on the parameters 

in order to find a unique solution. If we were to seek a direct 

solution for the ex. , sand f-" s, these res trictions would be: 

o and 01 + ~2 O. 

The rank matrix of the columns and the number of columns are, for 

instance, always the same if we choose V so that V'V is diagonal, 

with V' as the transpose of matrix V (V is then called column-wise 

orthogonal), or so that V'V is equal to the unit matrix CV is then 

called column-wise orthonormal). 

3.2. Three useful forms of design matrices 

3.2.1. Helmert matrices 

Let us first consider the case in which we have a single classifica

tion. Example: i=I, ..... ,n corresponds to n age categories, X. is 
N~ 

the number of accidents in each such category. A first-type design 

matrix often used is the Helmert matrix. 

A complete Helmert matrix for n = 4 is as follows: 

-I -I -I 

-I -I 

o 2 -I 

003 

Note that this V is column-wise orthogonal. The model ~= ve is 

therefore saturated. A perfect fit is possible if we choose 
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9 = (V'V) -Iv'rl . Unsaturated models are possible by omitting 

columns of V, which agrees with the hypothesis that some of the 

elements of 9 in the saturated model are equal to zero. The inter

pretation of Helmert effects becomes clear from the following 

equivalences: 

9
1 

0 ~ rrti 0 - \/J/li' 
92 = o ~ Yl.2 iLI - '\ e vrx: 
9

3 
0 ~ 2 tt3 ttl + i1. 2 <=i> A 3 = V AI >"2 

94 = 0 ~ 314 '1,1 + 1(,2 + t"j, 3 #- A 4 ~Al >--2 A3 

From this, we can for instance derive: 

.A
4 

\2r;::: V I 2' 

and so on. Helmert effects therefore compare every A. individually 
~ 

with the geometric mean of the preceding A .. In this way, we can 
~ 

discover whether there is a trend in our data, or perhaps a sudden 

jump. 

3.2.2. Orthogonal polynomials 

Let us assume that the age categories ~n our example are intervals of 

equal length. We might then be interested in the functional relation 

between age and accident rate. We can describe this functional 

relation as a polynomial, i.e. as a linear combination of orthogonal 

polynomials; for n = 3 this gives, for instance, the following 

(column-wise orthogonal) design matrix: 

-I 

o -2 
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Each constant function on (1,2,3) is of course a mUltiple of the first 

column of V, each linear function on (1,2,3) is a linear combination 

of the first two columns, and each second-degree function is a linear 

combination of the first three columns. Each function on (1,2,3) 

can be regarded as a second degree function: this is merely another 

way of saying that the model defined by V is saturated. Unsaturated 

models generally have the form 8
3 

= 0 or 8
2 

= 8
3 

= O. The hypothesis 

83 = 0 says that the three points (1, YGI)' (2'~2)' and (3'~3) are on 

a straight line, the hypothesis 82 = 83 = 0 says that 111 = ~ 2 = ~ 3. 

Generally, the hypothesis that ( 'rl 1' •• ·.' tt n) is a q th degree 

polynomial on (1,2, •.. ,n) can be written tz. 11 (i). From our discus-
1. q 

sion it follows that: 

rz. = IT (i) <=;> 8 1 
1. q q+ 8 

n 
O. 

The interpretation of polynomial effects in log-linear models is 

rendered difficult by the use of log-transformation, since: 

n . = 1f (i) ~ A. = exp (1\ (i» = exp ( 0<. + IX 1 i + .••. 
'(, 1. q 1. q 0 

r:: 11 Di.1 
Lxp(i :J 

This latter function is rather less simple and unacquaintanced 

than a polynomial. 

3.2.3. Between-Within contrasts 

In many cases, categories of our classification break down naturally 

into different groups. Age can, for instance, be divided into two 

groups: the under-forties and over-forties. This subdivision can 

be shown in saturated design-matrix form as 

00-20 

20-40 

40-60 

60-80 

-I -I 

- 1 + 1 

o 
o 

o -I 

o +1 
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In this case the measurements themselves are therefore in four 

categories, and we examine so to speak whether subdivision into fewer 

categories is possible without forfeiting too much information. 

The first column of V corresponds as usual to the total average, 

the second column contrasts the two groups (the between-group 

effect), and the third and fourth columns examine the effects within 

the groups individually. If there are K groups with ~ elements 
K 

( ~=I ~ = n), then there are generally K-I between-group effects, 

and ~ (~ - I) = n - K within-group effects. The most common 

unsaturated models state that all e values corresponding to between

group effects are zero. This agrees with the hypothesis that the 

arithmetic means of the ~ i are the same for each group, which is 

equivalent to the fact that the geometric means of the 

same for every group. 

3.2.4. Combination of design matrices 

.>... are the 
1. 

Let us now examine a two-way classification with, for instance, two 

classes in the first characteristic (e.g. male against female), and 

four classes in the second characteristic (e.g. the four age groups 

in the preceding section). We first choose two design matrices VI 

and V
2 

for the separate characteristics. 

For example: 

+ I - I 

+ I + I 

+1 -I -I 0 

+1 -I +1 o 
+ I +1 

+1 +1 

o -I 

o +1 

We next form from all 2 x 4 = 8 combinations of columns of VI and 

V
2 

the external product (the external product of an n-vector x and 

an m-vector y is an n x m matrix with the elements x.y.). This 
1. J 

gives the following eight matrices: 
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VI V2 
Product 

+1 +1 +1 +1 

+1 +1 +1 +1 

2 -I -I +1 +1 

-I -I +1 +1 

3 -I +1 0 0 

-I +1 0 0 

4 0 0 -I +1 

0 0 -I +1 

2 -I -I -I -I 

+1 +1 +1 +1 

2 2 +1 +1 -I -I 

-I -I +1 +1 

2 3 +1 -I 0 0 

-I +1 0 0 

2 4 0 0 +1 -I 

0 0 -I +1 

We can treat these eight matrices as eight vectors of eight elements, 

and thus form a design matrix VI2 with these vectors as columns. 

Thus: 

Design matrix Belonging to vector 

+1 -I -I 0 -1 +1 +1 0 r(l 
(loll I 

+1 -I +1 0 -I +1 -I 0 nl2 
+1 +1 0 -I -I -I 0 +1 

I ' 
Ii'Ll 3 

+1 +1 0 +1 -I -I 0 -I '11' i ,14 
+1 -I -I 0 +1 -I -I 0 l!121 
+1 -I +1 0 +1 -I +1 0 '1 22 
+1 +1 0 -I +1 +1 0 -I It 23 
+1 +1 0 +1 +1 +1 0 +1 tL 24 
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The matrix V
I2 

so constructed is again column-wise orthogonal, and 

defines a saturated model. We can say that V
I2 

is formed via external 

products. In using a design matrix built up in this way, we usually 

wish to investigate a given type of unsaturated models. Let us 

examine these unsaturated models with respect to our example. 

We first choose the column corresponding to the first column of VI 

and the first column of V2• This is the first column of V12 . The 

hypothesis 8 1 = 0 is equivalent to the hypothesis that the arithmetic 

mean of the ~ .. (i=I,2;j=I,2,3,4) is zero, i.e. that the geometric 
1.J 

mean of the A .. equals one. 
1.J 

We next choose the group of columns of VI2 composed from the first 

column of VI and column two, three or four of V2 . These are columns 

2, 3, 4 of V12 . The hypothesis 8
2 

= 6
3 

= 6
4 

= 0 is equivalent to 

the hypothesis that the column averages of the tz .. are identical, or: 
1.J 

Q. I = '2. 2 = 1(.3 = 11.4 

This 1.S equivalent to: 

In the same way, we can choose the group of columns composed from 

the first column of V2 and a non-first column of VI' This group 

consists of the fifth column of V
I2

, The hypothesis 6
S 

= 0 is: 

Lastly, there 1.S the group of columns 6, 7, 8 corresponding to a 

non-first column of VI and a non-first column of V2• The hypothesis 

8
6 

= 8
7 

= 8
8 

= 0 corresponds to: 

that is to say with lack of additive interaction in the h .. . L 1.J 

(cf. model (I) on page 6), which in turn is the same as the lack 

of multiplicative interaction in the A .. (for a comparison of these 
1.J 
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two forms of interaction see Darroch, 1974; Lancaster, 1973, 1975). 

It is clear that this form of analysis via external products can be 

generalised to tables with more than two classifications. We always 

begin with design matrices for each of the characteristics, form 

external products, and group the columns of the ultimate design 

matrix by examing which first columns appear in them. Hence, we 

form groups of effects corresponding to the additive interactions 

of the tt's (which are known from ordinary analysis of variance, 

and to multiplicative interactions of the A's (which can be 

interpreted in the manner of section 2.2. as independence models). 

It is important to realise that an interaction hypothesis in the 

form 86 = 8 7 = 88 = 0 in the above example is either true or not 

true, regardless of the choice of the original VI' V2 .••••• 

The choice of design matrix for a given characteristic is therefore 

of importance only for better interpretation of the individual 8's, 

but is of no importance in describing the table according to the 

contributions of the characteristics or the interactions between them. 
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4. PARAMETER ESTIMATION AND HYPOTHESIS TESTING 

4.1. Introduction 

For convenience, we will briefly enumerate the fundamental assumptions 

for the class of models in which we are interested. 

AI: X. f'\.o 
"'~ 

( e . ~~) 
~ ~ 

A2: X. are independent 
"'~ 

A3: ~o = V eO. 

In AI, e is a known vector of weights (or measures of exposure); in 

A3, ~ 0 = In A 0, and V is a known n x p design matrix, which we 

shall assume to be column-wise orthonormal. The superscript '0' 

with e, '0' and ~ is to indicate the 'actual' value of these 

parameters, and to distinguish them from estimators and variables in 

specific functions. What interests us in the first place is estimation 

of the p unknown parameters, and ~n the second place verifying 

whether the model AI, A2, A3 is correct. For this, it ~s important 

also to formulate in A3 other (equivalent) ways. If V is an n x p 

column-wise orthonormal matrix, then there is an n x (n - p) column

wise orthonormal matrix V such that V'V = O. It is clear that A3 
c c 

can also be written as: 

A3: V~ YJ..0 O. 

A third formulation ~s possible if we define the p-dimensional 

linear space Vas: 

then 

A3: ttO 
E. V 
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It is generally unfeasible to use estimators and test procedures 

which are optimal for all conceivable sample sizes. We shall there

fore use asymptotic arguments, and derive estimates and tests 

which have optimum properties if certain factors tend to infinity. 

For this purpose, we reformulate Al as: 

AI: X.Nt>(m P . A?). ",,1 \'1 1 

e \ o. The factor m indicates how great our weights . and parameters A 
1 1 

are on average. If we continue our observations, the X. will of 
..v1 

course tend to infinity. The assumption Al says, in fact, that all 

X. tend to infinity just as quickly: if m becomes infinitely great, 
",,1 

then the values X./m converge (in probability) towards the fixed 
",1 

factors e. A? 
1 1 

For our analyses, it 1S generally unnecessary to known the value 

of m; we must merely be prepared to make this assumption. The following 

facts are known from the general theory of asymptotic statistical 

analysis. In the first place we shall be interested in estimators 
~ ""P 0 

that are consistent; viz. if m~C/.) then 6(m)-7 6 . In the second 

place, we are interested in estimators that are asymptotically normal, 

which means that their distribution more and more resembles a multi

normal distribution if m tends to infinity. For estimators with these 

two properties, which we can summar1se as: 

TI: 

the asymptotic dispersion matrix L satisfies the dissimilarity: 

in which MO is the diagonal matrix with the values e. A? on the 
1 1 

diagonal. Estimators in this class for which the dissimilarity is 

a similarity, and which in a certain sense are thus as precise as 

possible, are called efficient. Although nearly all available 

estimators satisfy TI, they do not necessarily meet the stricter 

requirement: 
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T2: 

Since efficiency is a necessary property, we shall confine ourselves 

to efficient estimators (i.e. estimators satisfying T2). Moreover, 

it is important to add that confidence intervals of estimators and 

tests of hypotheses via these estimators are generally asymptotically 

optimal if the estimators are efficient. 

It is known that efficient estimators can be found by maximising the 

likelihood function, that gives the likelihood of the observations as a 

function of the parameters, and that an asymptotically optimum test 

of A3 within AI-A2 is possible by calculating the likelihood ratio 

between the most suitable estimator or estimators and the hypothetical 

value of the parameter or parameters. The estimation and test theory 

based on this maximum likelihood is set forth for log-linear Poisson 

models Ln Haberman (1974). The theory is modified for weighted Poisson 

models in De Leeuw (1975). On the whole, calculations based on 

likelihood are not very simple, and we consider here a different class 

of estimators and tests (also optimal and efficient), based on 

Neyman's modified minimum Chi-squared method (1949). 

4.2. Modified minimum Chi-squared methods 

We begin this section with a known limit theorem for Poisson variables 

which, applied to AI, says that if m --;;. GO : 

x. - me· A ~ C, . ?(O I) rVL L L .~JV , 
I 

(m E. A~) 2 
L L 

If we define 

then we can rewrite it in a rather more convenient form: 

I X 0 

I 'i 
le··· ). , , . 
. 'L 
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If, lastly, we define: 

Z. In Y. ",1. ",1. 

it follows from this that 

The modified minimum Chi-squared method we shall discuss below has 

a simple geometric interpretation. We define the distance measure: 

The matrix X is diagonal, and the X. are on the diagonal. Note 
~ ~1. 

that so far we have already demonstrated that: 

8 (Z, 
tV 

if m-:;.oo (this follows from the limit distribution of Z, and from 

/ :P e . 0) .. . d h d' '" b X. m ~ . l\ . . For est1.mat1.ons, we cons1. er t e I.stance etween ",1. 1. 1. 
the vector Z of observations, and the collection of permitted esti-

mators tz. . For calculating the modified minimum Chi-squared esti
A 

mators we must choose ~ so that: 

1\ 

<5 (Z, 'G 
rv 

) = m i n 8 (Z, rz. ). 
I(,€V f'oj 

/\ 0 
This gives an estimation ~ for ~ . The corresponding estimator 

for eO is V'~ , and the statistic used for testing A3 is c8 (~, t1 ). 
In the next section we study the distribution of estimators and 

statistics. 

4.3. Calculations and limit distributions 

The problem 

m i n 
'G e V 

) 



-20-

can be formulated in two different ways. The first formulation is: 

m i n cl (Z, ve) 
e f\J 

This gives estimators el' and then ~ I 

Lagrange multipliers and can be written as 

m 1. n m a x ~ (Z,Y(. ) + 2(.0' V~~. 
'" 

A ('\ 

vel' Formulation 11 uses 

This gives estimators r& 11 and uu , and then all = v' rt 11' 

The (n-p)-element vector U) is a vector of indefinite multipliers. 

The model can now also be written as: 

A3 w = o. 

As the solution of the original problem is unique, obviously 

e and 

~ 

\(,1 '111 = rt,. 

It follows from formulation I that a is given by 

e = (V'XV)-IV'XZ 
IV "'1'\1 

and hence 

A 

~= V(V'XV)-IV'xZ. 
,... "''\I 

A 

It further follows that both e and f0 are efficient estimators; 

in other words: 

m! (8 - eO)(SX(O, (V'MoV)-I ) 

m! (i, - 'r(,0) z~&;> JV (0, v (V'MoV) - IV' ) 
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The asymptotic dispersion matrices can be estimated by: 

S(9) (V'XV)-1 
IV 

It furthermore follows from the given results that: 

(' 1\ ~ 2 
o (Z, h ) ~-y . 

N'U ~n-p 

Formulation 11 gives other useful information. We find: 

The vectors c.) and 'L are asymptotically independent, and 

From equations I and II it also follows that g (Z, ~) can be 
'" written in three different forms: 

Z' 
'" [

X - XV(V'XV) -lv,x 1 Z 
N "'\J N N IV 

The statistic 8 (~, ~ ) is therefore also found if we test A3 in 

the form v~rz., = 0 or CA) = 0 by using the asymptotic distribution of 

" VIZ and 6U. These tests are known respectively as the Wald test c", 
and the Lagrange multiplier test; in this context they are thus 

equivalent to the Neyman method. 

Especially if V is a matrix of low-rank, the Wald test will be 
c 

preferable. 
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ANNEX 1. CORRECTION FOR BIAS 

We can apply a correction for bias if, before calculating the 

Z. values, we first add ~ to the X-values, so that Z. is then 
1 1 

defined as: 

X.+~ 
Z. In _1_ 

1 me. 
1 

Why!. Suppose we define: 

X+a 
Z = In~ "" me 

(For convenience we omit below the i and the small superscript 0; 

we also define JV" eA ). If: 

(X - m f" ) 
U = ~""~-----------

+ a 

then 

Z = h + U -
,..;(.. '" 

+ ••.•• 

From which it follows that: 

E(Z) 
IV 

'2 + 

This correction also has the useful side-effect that Z is now 

also defined for X = o. 
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ANNEX 2. COMPUTER PROGRAMME 

In the computer programme it is necessary to read in per variable 

a design matrix of orthogonal column vectors, the first column vector 

being generated. The definitive design matrix is constructed in 

the programme with the aid of the external product method and then 

converted into an orthonormal matrix. If one is not interested in 

individual effects, therefore, the simplest method is to introduce 

Helmert effects. The a's of the saturated model are calculated with 

the formula: 

a (V'XV)-IV'XZ 
N N'V 

In the case of a saturated model for the orthonormal V-matrix this 

formula reduces to: 

a v'x-Ivv'xz = VIZ 
"'''' '\J 

The relevant variances, on the basis of which the standard scores 

are calculated, are on the diagonal of matrix (V'XV)-I, which is 

calculated in the case of saturation as V'X-IV, and hence no invertion 

is needed. 

For testing hypotheses in which (always limited) groups of a's are 

taken as zero. Formulation 11 on page 20 is used because in this case 

only a matrix of limited order need be inverted in order to obtain: 

8 (Z, ~ ) 
"" 

The matrix V 'X-IV is given as a part matrix of matrix V'X-IV 
c IV c 

already calculated. 
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ANNEX 3. EXAMPLE OF AN ANALYSIS 

As an illustration, an example is worked out below. 

It has been chosen because of the simplicity of the table. 

A three-way table was chosen, in which the variables are: 

A: The province of Noord-Brabant as against the Rest of the Netherlands. 

B: Drinking established as against not established. 

C: Location on road (intersection, road section, corner/bend). 

The cells of the table show the number of deaths in the years 1971-

1973 (Central Statistical Office data), inside built-up areas. 

Cl C2 C3 
(intersection) (straight road) (corner/bend) 

Al (N-Br) BI (drinking) 22 48 14 

B2 (not drinking) 243 272 48 

A2 (Rest of BI 97 202 68 

Neth. ) 
B2 1206 1442 189 

These figures are weighted in the analysis for number of inhabitants 

in Noord-Brabant by factor 18.80 and in the Rest of the Netherlands 

by factor 115.08. 

In analysis, use was made of the following design matrix \J , 
built up from Helmert-effects. 
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Matrix: Effect: 

T: total 

-1 -1 -1 -1 -1 -1 A: Noord-Brabant as against 
Rest of Netherlands 

-1 -1 -1 -1 -1 -1 B: drinking established as 
against not established 

-1 0 -1 0 -1 0 -1 0 Cl: intersection as against 
road section 

-2 -2 -2 -2 C
2

: intersection + road section 
as against corner/bend 

V'= 1 1 -1 -1 -1 -1 -1 -1 A x B 

-1 0 -1 0 -1 0 -1 0 A x Cl 
-2 -2 -1 -1 2 -1 -1 2 A x C

2 
-1 o -1 0 -1 o -1 0 B x Cl 

-2 -1 -1 2 -2 -1 -1 2 B x C
2 

-1 0 -1 o -1 0 -1 0 A x B x Cl 

-2 -I -1 2 -1 -1 2 -2 A x B x C
2 

The results of the estimations for the saturated model are given below. 

The (2x2x3 = 12) estimators agree with a total effect, the main effects, 

first-order interaction effects and second-order interaction effects. 



Total effect: 

Main effects: 

A-effect: 

B-effect: 

C-effects: 

First-order interaction 

effects: 

A x B effect: 

A x C effects: 

B x C effects: 

Second-order interaction 

effects: 

A x B x C effects: 

N.B. 95% limit: 
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Single scores 

+27.59 * * 

+ 4.02 * * 
-24.24 * * 
- 5.98 * :} 
+14.19 * A 

+ 0.41 N.S. 

+O.ION.S.} 

0.46 N.S. 

- 4.04 * * } 
- 5.70 * * 

- 0.35 N. s.} 
+ 1.03 N. S. 

+ 1.96 

Chi-squared 
values 

761 .28 

16. 16 

587.35 

265.27 

0.17 

0.23 

43.26 

I. 31 

3.84 

5.99 

Degrees of 
freedom 

2 

2 

2 

2 

2 
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Scores are in standard form. In this way it can already be ascertained 

which effects are significant, for instance at 5% level. These are 

marked ~ ~. This test can also be made with an X2-test. For each 

effect we then find one X2-value (see column 2) with the relevant 
2 number of degrees of freedom (see column 3). Note that the X -values 

for df=l are equal to the square of the single scores. 

In the Chi-squared tests it is then assumed in each case that all 

estimators agreeing with the effect are equal to zero, and the 

X2-value indicates the extent of the discrepancy between the model 

so obtained and the data. 

Where we are concerned with one degree of freedom per effect, the 

significance of both tests is by definition identical. In this 
2 analysis, the other X -values provide the same result as the single-

score test. This is not necessarily always the case. The single 

scores, for instance, may all be (just) not significant, but together 
2 

yield a significant X -value. 

It is also possible that only one single score is significant, which 

does not make the total X2-value significant. 

In such cases the X2-value and the single scores thus provide 

additive information. 

Interpretation of the data 

In ~eneral the main effects and the total effect themselves are 

not very significant in interpreting the data. Here, however, 

where a correction was made for the number of inhabitants, it can 

be said as regards the A-effect that per inhabitant there are fewer 

accidents in the Rest of the Netherlands than in Noord-Brabant 

(the direction of the effect is shown by the sign!). 

In order to interpret this phenomenon, we would have to know 

something for instance about the degree of urbanisation in Noord

Brabant and in the Rest of the Netherlands and also at least 

something about the number of traveller and vehicle kilometres. For 

interpretation of the B x C effect is is important to realise that 

this relates to cases where drinking was established. It would be 
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interesting to relate this to built-up/non-built-up areas as well. 

All this should make it clear that interpretation of the effects 

is an exercise unconnected with the analysis itself. 


