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Summary

The SWOV-project Infrastructure and Road Safety aimed to find
(mathematical) relations between characteristics of the Dutch road
infrastructure and road safety. Such relations are often called accident
prediction models (APMs). The SWOV-project developed APMs for distributor
roads in The Hague region Haaglanden and for provincial roads in the
provinces Gelderland and Noord-Holland. This report discusses the APMs for
the distributor roads in Haaglanden. This part of the project was carried out in
the European project RIPCORD-ISEREST.

In order to develop APMs a database is needed which contains several
road characteristics, including the average amount of daily traffic (AADT)
and road length. The number of road crashes in a certain period should
also be known. For Haaglanden the database Wegkenmerken+ meets
these conditions. Wegkenmerken+ is based on the Dutch National Roads
Database (NWB). As a consequence single and dual carriageway roads are
treated differently. A dual carriageway road is a road on which the driving
directions are separated by a physical barrier, so a dual carriageway road
consists of two carriageways and each of these carriageways has one driving
direction. A single carriageway road consists of only one carriageway and this
carriageway can have one or two driving directions. In the NWB, and hence
in Wegkenmerken+, the road characteristics are listed per carriageway, so
for a dual carriageway road the characteristics are given separately for each
carriageway. The accident prediction models are therefore not models for
roads, but for carriageways.

Examples of the road characteristics listed in Wegkenmerken+ are location
(urban or rural), the speed limit, the type of road the carriageway is part of
(single or double carriageway) and the number of driving directions. These
characteristics are used to define the following carriaway types for which
APMs are developed:
– carriageways of distributor roads inside urban areas;
– carriageways of distributor roads outside urban areas;
– carriageways of dual carriageway distributor roads inside urban areas,

with a speed limit of 50 km/h, one lane in each driving direction;
– carriageways of single carriageway distributor roads inside urban areas,

with a speed limit of 50 km/h, two lanes and two driving directions.

Two model forms are tested, namely

µi = eα · AADT β1

i · Lβ2

i

and
µi = eα · AADT β1

i · Lβ2

i · eβ3·
AADTi

1000 ,

where µi is the expected number of road crashes on carriageway segment i
in three years, AADTi is the AADT of that carriageway segment and Li the
length. The second form turned out to be the best for all carriageway types
except for carriageways of single carriageway distributor roads inside urban
areas, with a speed limit of 50 km/h, two lanes and two driving directions.
The model parameters α, β1, β2 and β3 are estimated with the GENMOD
procedure of SAS 9.1. The procedure uses generalized linear modelling, a
technique which is often used in the literature to develop APMs. The fit of the
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models is extensively checked by conducting several statistical tests on the
deviance, the parameter estimates and the standardized deviance residuals.
The conclusion of these tests was that all models fit the data reasonably well.

The developed APMs were compared to each other. The following
conclusions could be drawn:
– for AADT ≤ ± 25000 carriageways inside urban areas generally have a

lower crash rate (number of crashes per motor vehicle kilometre) than
carriageways outside urban areas, see Figure 4.27;

– carriageways with a speed limit of 50 km/h or 80 km/h and one driving
direction have a lower crash rate than carriageways with the same speed
limit but with two driving directions;

– the average crash rate of urban carriageways with a speed limit of 70 km/h
is lower than the crash rate of carriageways with a speed limit of 50 km/h

– the average crash rate of rural carriageways with a speed limit of 60 km/h
is almost the same as the crash rate of rural carriageways with a speed
limit of 80 km/h and two driving directions.

Some of these conclusions are counterintuitive. For example, the one which
states that urban carriageways with a speed limit of 70 km/h have a lower
crash rate than urban carriageways with a speed limit of 50 km/h. However,
this conclusion does not state that reducing the speed limit increases
the crash rate. For this type of conclusions before and after studies are
necessary.

Because of the limited size of the database, it was not possible to develop
APMs for more detailed carriageway types. Therefore we recommend to
collect more data on more roads for further research. This data should not
only include characteristics of road segments, but also characteristics of
intersections. So far intersections were not considered separately, they were
considered as part of carriageways. By developing models for intersections it
is possible to investigate the influence of intersection characteristics on the
safety of intersections.
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1. Introduction

The research in this report is part of the project Infrastructure and Road
Safety which was carried out at the SWOV Institute for Road Safety
Research. The general goal of this project is to find relations between
characteristics of the Dutch road infrastructure on the one hand and road
safety on the other hand, using risk and exposure measures. This general
goal is translated into the following two more specific goals:
– to get insight into the quantitative road safety aspects of infrastructural

characteristics within certain road categories;
– to get insight into the quantitative road safety aspects of infrastructural

characteristics between certain road categories.

The project is partly embedded in the European project RIPCORD-ISEREST.
The aim of this project is to give scientific support to the European transport
policy to reach the 2010th transport road safety target by establishing best
practice tools and guidelines for road infrastructure safety measures. To
do so, good insight is needed in the variables that explain the crash levels
on roads and networks. Variables, for example, are the average amount
daily traffic (AADT), the width of a road, the number of lanes, the presence
or absence of bicycle lanes and the way the priority on an intersection
is organized. The relation between the safety and these factors can be
described by the mathematical models like the accident prediction model
(APM) and the road safety impact assessment (RIA). These models are the
subject of Workpackage 2 of RIPCORD-ISEREST, which started with making
an overview of the state-of-the-art on accident prediction models and road
safety impact assessments, see Reurings et al. (2005).

The next step in this workpackage consists of pilot studies which are
carried out in the four participating countries: Austria, the Netherlands,
Norway and Portugal. In these pilot studies accident prediction models are
developed, based on the models and modelling techniques discussed in the
state-of-the-art report. This report discusses the pilot study carried out by
SWOV in the Netherlands. Accident prediction models have been derived
for the Dutch city region Haaglanden, an area consisting of The Hague and
surroundings. Haaglanden was chosen because the road characteristics
database Wegkenmerken+ is most complete for this area. The models have
been developed using the generalized linear modelling technique.

This report first makes some preliminary remarks about road characteristics
which may have an influence on road safety and about the database
containing the carriageways of Haaglanden in Chapter 2. Then in Chapters 3,
4 and 5 several models are developed, compared and discussed for these
carriageways. The report ends with conclusions and recommendations in
Chapter 6. The report also explains in which way modelling results can be
used by road authorities. The Appendix gives a summary of generalized
linear modelling.
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2. Preliminary remarks about the models for Haaglanden

This chapter discusses some preliminaries which are important for
the development of accident prediction models for the carriageways in
Haaglanden. First, we give examples of road characteristics which may have
an influence on road safety. Then we will introduce and discuss the database
which is used . Next, the different structures of the models to be developed
are given, and finally we explain how the crash rate can be visualized.

2.1. Infrastructural characteristics which influence road safe ty

A large number of road characteristics have a possible influence on road
safety. There are three different types of characteristics: function, design and
use. The function of a road can be considered as the possibility that is offered
to a moving vehicle on that road. In the Sustainable Safety programme a
distinction is made between three types of road function. The two ’extreme’
types are through-roads, for traffic dispersion, and access roads, for access
to the destination. The third type, the distributor roads, are intended to make
a good link between the two extreme types, both literally and figuratively.
Distributor and access roads exist inside and outside urban areas, which
means that there is a total of five road categories.

In an ideal situation the road design should be determined by the function.
Important differences between the designs of the road categories are:
– the number of main carriageways and service roads;
– the type of road surface;
– the presence and type of edge and lane marking;
– the parking possibilities;
– the presence and type of exit roads.

Certain road use characteristics also have a large influence on road safety. A
few examples are:
– the amount of traffic, given the number of carriageways, lanes and specific

facilities;
– the type of traffic, given the access limitations;
– the traffic speed, given the speed limit;
– the number of driving directions per carriageway;
– the speed enforcement and other behavioural rules by the police.

The database Wegkenmerken+ contains several design characteristics for
distributor roads in Haaglanden. The database will be discussed in more
detail in the following section.

2.2. The database

The database which is used for the research in this report contains
information about carriageways in the city region Haaglanden, as we
already mentioned in the introduction. One of the consequences of the road
characteristics being listed per carriageway, for example, is that the average
amount of daily traffic (AADT) ofF segments of dual carriageway roads is
given separately for each carriageway and hence for each driving direction,
whereas the AADT of single carriageway roads is the sum of both driving
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directions. All the carriageways are part of distributor roads, both inside and
outside urban areas. The first type will be referred to as urban carriageways,
whereas the latter will be called rural carriageways.

Besides the functional characteristic of the carriageways, that of urban or
rural distributor road, the database also contains some design and use
characteristics. The design characteristics which are reasonably well listed
are the number of main carriageways of the road segment the carriageway
belongs to and the presence of parallel facilities such as bicycle paths and
service roads. In the database, the use of the carriageways is fairly well
described by the average amount of daily traffic, the speed limit and the
number of driving directions. Other road characteristics in the database
are:
– the length of the carriageway in metres;
– the number of speed humps;
– the number of exits;
– the type of limited access;
– the bicycle and/or moped facilities;
– the road surface;
– the parking facilities;
– the type of edge marking.
Carriageways for which these characteristics are the same are taken together
and form one new carriageway. This procedure results in 303 carriageways
inside and 98 carriageways outside urban areas. For all these combined
carriageways the database also contains the number of crashes which
occurred on each carriageway in the 2000-2002 period. These crashes
include those that happened on intersections.

Based on the available road characteristics in the database it is possible to
define several road types (or actually carriageway types). Together with the
working group Haaglanden we decided to distinguish the following types:
– carriageways of distributor roads inside urban areas, with a speed limit of

50 km/h and one driving direction;
– carriageways of distributor roads inside urban areas, with a speed limit of

50 km/h and two driving directions;
– carriageways of dual carriageway distributor roads inside urban areas,

with a speed limit of 50 km/h, one lane and one driving direction;
– carriageways of single carriageway distributor roads inside urban areas,

with a speed limit of 50 km/h, two lanes and two driving directions;
– carriageways of distributor roads inside urban areas, with a speed limit of

70 km/h;
– carriageways of distributor roads outside urban areas, with a speed limit of

60 km/h;
– carriageways of distributor roads outside urban areas, with a speed limit of

80 km/h and one driving direction;
– carriageways of distributor roads outside urban areas, with a speed limit of

80 km/h and two driving directions.

Table 2.1 shows the crash rate of these carriageway types, the number of
injury crashes per year divided by the motor vehicle kilometres per year. It
should be remarked that the vehicle kilometres are measured in 2003, while
the number of crashes per year is the average over the years 2000-2002. It is
possible to compute the vehicle kilometres for 2001 by assuming a constant
traffic growth each year. This results in AADTs which are a constant factor
smaller than the AADTs in 2003. Because this constant factor, i.e. the traffic
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growth, is not exactly known, we did not use this method for the research
presented in this report. Instead we assumed that the AADT in 2003 is an
appropriate estimate for the AADTs in the years 2000-2002.

Carriageway type Total length AADT Vehicle km Injury crashes Crash rate

All carriageways 524 11934 2282 1051 0.46

All urban carriageways 413 11716 1765 944 0.54

Urban, 50 km/h, one direction 244 11955 1065 511 0.48

Urban, 50 km/h, two directions 146 9670 514 410 0.80

Urban, 50 km/h, one direction, dual 242 11966 1057 501 0.47

Urban, 50 km/h, two directions, single 145 9679 513 410 0.80

Urban, 70 km/h 13 29527 139 16 0.11

All rural carriageways 111 12746 517 107 0.21

Rural, 60 km/h 20 11275 84 24 0.28

Rural, 80 km/h, one direction 37 14502 198 26 0.13

Rural, 80 km/h, two directions 45 11296 184 48 0.26

Table 2.1. The average crash rate over 2000-2002 for the different carriageway types.

Based on Table 2.1 several conclusions can be drawn. For example,
carriageways with one driving direction are safer than carriageways with two
driving directions. However, it is not clear how influential the AADT is on
the crash rate, while it is intuitively clear that AADT does have an influence.
Extensive models for each carriageway type are needed to determine the
AADT influence. In Chapters 3 and 4 models are developed for the complete
selection of urban roads and the complete selection of rural roads. Chapter 5
describes the problems with disaggregating the models to speed limit. Some
general results are given.

2.3. The different forms of the models

Reurings et al. (2005) concluded that an accident prediction model for road
segments should be of the following form:

µi = α · AADT β
i · eγj ·xij ,

where µ is the expected number of road crashes in a certain period, AADT
is the AADT in that same period, xjare other explanatory variables, α, β, γj

are the parameters to be estimated and the subscript i denotes the value of a
variable for the i-th road segment.

According to Reurings et al. (2005) the other explanatory variables should at
least include the (logarithm of the) segment length, the number of exits, the
carriageway width and the shoulder width. However, in this study we prefer
to develop separate models for different road types instead of including the
variables which characterize a particular road type in the models. The only
two explanatory variables will be the carriageway length and the AADT. The
main focus will be on the two main road types: urban and rural distributor
roads. Also models should be developed for the other road types, but due to
low numbers of carriageways for most of the road types this is not possible
for all types. The types for which models are not developed will be compared
with simple plots.
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Two types of model are used, the first of which is directly based on the
conclusions of Reurings et al. (2005). It is given by

µi = eα · AADT β1

i · Lβ2

i , (2.1)

where Li is the value of the variable L for carriageway i, i.e., Li is the length
(in metres) of carriageway i. It is obvious that (2.1) can be rewritten as

log(µi) = α + β1 · log(AADTi) + β2 · log(Li), (2.2)

which actually is a generalized linear model. The values of the parameters
α, β1 and β2 will be determined by using the GENMOD procedure in SAS in
the three different ways described in the Appendix. It will be assumed that the
number of crashes is Poisson or negative binomially distributed and should
hence be integers. Therefore the parameters cannot be estimated based on
the average number of crashes in 2000-2002 and hence the total number of
crashes in 2000-2002 will be used as observations. As a consequence µi will
not be the predicted number of crashes per year but per three years.

The parameter β2 will be very close to 1 for almost all models developed in
Chapter 3. Ignoring this parameter and dividing both sides of (2.1) by Li and
3 results in a model for the number of road crashes per metre per year. So
if β1 is positive, then the number of road crashes per metre is increasing for
increasing AADT and if β1 is negative, then the number of road crashes is
decreasing for increasing AADT . Neither of these possibilities is the case
in practice. This is made clear by Figures 2.1 and 2.2. For the graph in
Figure 2.1 the urban carriageways were divided into the following AADT
classes:
1. AADT < 5000;
2. 5000 ≤ AADT < 10000;
3. 10000 ≤ AADT < 15000;
4. 15000 ≤ AADT < 20000;
5. 20000 ≤ AADT < 30000;
6. 30000 ≤ AADT < 40000;
7. AADT ≥ 40000.
For each of the classes the average AADT is computed and the total number
of crashes is divided by the total length of the carriageways in kilometres.
Figure 2.2 shows the number of road crashes per kilometre of ten subsequent
urban carriageways, where the carriageways are ordered by increasing
AADT.

These figures show that the number of crashes per kilometre neither just
increases nor decreases, indicating that the models developed in Chapter 3
are not of the appropriate structure. An explanation for the shape of the
graph in Figure 2.1 can be that the database used consists of carriageways
of very different types. Therefore, Figure 2.1 does not indicate that an
increasing AADT causes a lower number of crashes per kilometre on the
same carriageway, but that carriageways with high AADT have fewer road
crashes per kilometre because they are designed to be safer.
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Figure 2.1. The number of road crashes per kilometre per year against the
average AADT for urban carriageways divided in seven AADT classes.
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Figure 2.2. The number of road crashes per kilometre per year for each ten
subsequent urban carriageways against the average AADT.
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There are several ways to try to get models of a more appropriate structure. A
first way is to define several classes for the AADT and to include the AADT as
a class variable in the model rather than a continuous variable. This makes it
possible to model a lower number of crashes for high AADTs. A disadvantage
of this method is that only the intercept of the model has a different value for
each class of the AADT; the parameter of log(AADT ) is the same for each
class. This means that the number of road crashes per metre increases or
decreases for all AADT classes. This is contradictory to the remarks above.
A solution to this problem is to make the classes smaller or even to let each
value of the AADT form its own class. This results in a large number of
dummy variables and is hence not a practical solution.
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Instead of adding the AADT as a class variable, it is also possible to develop
a model for each level of the AADT separately. The parameter of log(AADT )
can then be different for each level. It can even be positive or negative for
different levels. This comes close to the desired form of the model, but also
this solution has a disadvantage: the model parameters have to be estimated
based on a very small data set which makes the estimates unreliable.

Because of the mentioned disadvantages of the possible solutions, we
decided to use a less insightful model structure:

µi = β0 · AADT β1

i · Lβ2

i · eβ3·
AADTi

1000 . (2.3)

The generalized linear model form of (2.3) is given by

log(µi) = β0 + β1 · log(AADTi) + β2 · log(Li) + β3 ·
AADTi

1000
. (2.4)

The AADT itself is added to model (2.2) next to its logarithm. The AADT could
be considered as a property of the carriageway under consideration and
hence as a sort of continuous dummy-variable. Because the AADT is very
large compared to log(L), log(AADT ) and the number of road crashes, the
estimated value of β3 would be very small. Therefore the AADT is divided by
1000.

Like model (2.1), models of the type (2.3) are developed based on the three
different ways described in the Appendix. The results will be discussed in
Chapter 4. Model (2.1), or equivalently (2.2), will be referred to as the simple
model, whereas model (2.3), or equivalently (2.4), will be referred to as the
extended model.

2.4. Visualising the risk of carriageways

Plots of the number of crashes per kilometre against the AADT (like the
plots in Figures 2.1 and 2.2) can be used to visualize the crash rate of
carriageways, which is defined as the number of road crashes per million
vehicle kilometres, both per year. In formula:

r =
y

L
1000 · AADT · 365 · 10−6

,

where y is the number of crashes per year. The angle α between the x-axis
and the line connecting the origin and one of the plotted points is given by

α = arctan

(

y
L

1000 · AADT

)

= arctan

(

365

106
· r
)

.

This shows that the larger the angle, the higher the risk. This is illustrated
in Figures 2.3 and 2.4. In these figures the number of road crashes
per kilometre per year is plotted against the AADT for urban and rural
carriageways respectively. Line A in Figure 2.3 makes a larger angle with the
x-axis than Line B in the same figure, which implies that the crash rate of the
carriageway corresponding to Point I (which is r = 4.6104) is higher than the
crash rate of the carriageway represented by Point II (which is r = 1.2139).
The two lines in Figure 2.4 show that the crash rates of the carriageways
corresponding to Point I and II are almost equal. Indeed, the crash rate of
the first carriageway is r = 1.1497, whereas the crash rate of the second
carriageway is r = 1.1107.

SWOV publication R-2006-14

SWOV Institute for Road Safety Research - Leidschendam, the Netherlands

13



Figure 2.3. The number of road crashes per kilometre against the AADT for
urban carriageways.
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Figure 2.4. The number of road crashes per kilometre against the AADT for
rural carriageways.
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3. The simple model

In this chapter models of the form (2.1) are developed for a selection of
carriageways in Haaglanden. The methods which are described in the
Appendix will be used and compared. Section 3.1 discusses the several
models for urban carriageways, and the models for rural carriageways are the
subject of Section 3.2.

3.1. Urban carriageways

3.1.1. The Poisson distribution

In this section a model is developed which describes the relation between
the number of crashes on urban carriageways on the one hand, and the
carriageway length and the AADT on the other, based on the assumption that
road crashes are Poisson distributed. The statistics in Table 3.1 describe the
goodness-of-fit of the model.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 300 1247.9565 4.1599

Pearson’s χ2 300 1459.4956 4.8650

Log likelihood 7044.5871

Table 3.1. Criteria for assessing the goodness-of-fit of the simple model for
urban carriageways, based on the Poisson distribution.

The deviance as well as Pearson’s χ2 is much larger than the number
of degrees of freedom, which indicates the presence of overdispersion.
This is not very surprising, because it already followed from the literature
that the Poisson distribution is not the most appropriate distribution to use
for the number of road crashes. A consequence of overdispersion is that
carriageways with the same AADT and length can have a statistically
significant different number of crashes, because the variance is rather large.
Only the AADT and carriageway length are not enough to explain the number
of crashes, therefore explanatory variables are missing.

In Sections 3.1.2 and 3.1.3 two other types of models will be developed to
solve the overdispersion problem. However, to allow comparison between the
different models, the results of the analysis of the parameter estimates based
on the Poisson distribution are given in the second column of Table 3.2.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -8.4758 0.3411 (-9.1444, -7.8072) 617.32 < 0.0001

log(L) 1.1210 0.0156 (1.0905, 1.1516) 5180.19 < 0.0001

log(AADT ) 0.2703 0.0296 (0.2123, 0.3283) 83.40 < 0.0001

Table 3.2. Analysis of the parameter estimates for the simple model for urban
carriageways, based on the Poisson distribution.
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The modelled relationship between the expected number of crashes on urban
carriageways in three years, the AADT and the carriageway length is hence
given by

µ̂i = e−8.4758 · AADT 0.2703
i · L1.1210

i = 0.00021 · AADT 0.2703
i · L1.1210

i .

The exponent of L is almost equal to 1, which shows that the number of road
crashes is approximately proportional to the carriageway length, for constant
AADT. In other words, the number of crashes per meter on a carriageway
is independent of the length of the carriageway length. This could be
counterintuitive, because there are reasons to expect that the risk for short
carriageways is different than for long carriageways. For example, on short
carriageways there is comparatively more accelerating and breaking and on
long carriageways the average driven speed is probably higher. However, the
exponent of L almost being equal to one does not indicate that this difference
in crash rate exists.

In the third column of Table 3.2 the standard errors of the estimates are
stated, which are equal to the square roots of the estimated variances.
The parameter estimates lie in the interval given in the fourth column with
a probability of 0.95. The bounds of this interval for the j-th explanatory
variable are computed as follows:

Parameter estimate ± ξ0.975σ̂j .

Here ξα is the α-quantile of the standard normal distribution and σ̂j is the
standard error of the j-th explanatory variable. The values in the fifth column
are the values of Wald’s χ2-statistic, which is defined as

χ2 =

(

β̂j

σ̂j

)2

.

This statistic follows a χ2
1 distribution. The last column of Table 3.2 gives

the p-values corresponding to Wald’s χ2, i.e. the smallest possible value
of the confidence level α at which the null hypothesis that the value of the
parameter is equal to zero would be rejected for the derived value of χ2.
With other words, the probability that the null hypothesis is falsely rejected is
smaller than the p-value. All parameters are hence statistically significant for
all confidence levels higher than 0.0001.

It is interesting to study the influence of the individual variables on the model.
This can be done in SAS with a Type 1 or a Type 3 analysis, which generate
statistical tests for the significance of these influences. A Type 1 analysis
involves fitting a sequence of models, starting with the most simple model
containing only the intercept. In each step a variable is added to the model.
For every two successive models the difference of the log likelihoods times
two is computed, which is equal to the difference of the scaled deviances if
ϕ is held fixed for all models and hence to the difference of the deviances
in case of the Poisson distribution. In the Appendix we remark that this
difference is χ2

1 distributed, under the null hypothesis that the parameter
of the added variable is equal to 0. So if the p-value for this parameter
value is smaller than α, then the null hypothesis can be rejected and the
added variable is statistically significant for confidence level α. The results
of a Type 1 analysis depend on the order in which the variables are added
to the model. In Table 3.3 the results of the Type 1 analysis are given. From
the Type 1 analysis it follows that both explanatory variables are statistically
significant for all confidence levels higher than 0.0001.

16 SWOV publication R-2006-14

SWOV Institute for Road Safety Research - Leidschendam, the Netherlands



Source Scaled deviance (SD) Difference between SD’s p-value

Intercept 8337.5883

log(L) 1331.8325 7005.76 < 0.0001

log(AADT ) 1247.9565 83.88 < 0.0001

Table 3.3. Statistics for the Type 1 analysis of the simple model for urban
carriageways, based on the Poisson distribution.

A Type 3 analysis computes the likelihood ratio statistic for each variable
xj , that is two times the difference between the log likelihood for the model
containing all variables and the log likelihood for the model with all variables
except xj . The likelihood ratio statistic follows a χ2

1 distribution under the
hypothesis that the parameter of xj is equal to zero. The results of the Type 3
analysis are given in Table 3.4. The Type 3 analysis leads to the same
conclusion as the Type 1 analysis.

Source Difference between scaled deviances p-value

log(L) 7048.64 < 0.0001

log(AADT ) 83.88 < 0.0001

Table 3.4. Statistics for the Type 3 analysis of the simple model for urban
carriageways, based on the Poisson distribution.

All the statistics described above were used to check the validity of the model.
For this purpose also three types of plot are very useful. In the first type the
standardized deviance residuals are plotted against the explanatory variables
in the linear predictor, see Figures 3.1 and 3.2. The null pattern of this type of
plot is a distribution of residuals with mean zero and constant range. Both
plots show a zero mean, but according to Figure 3.2 there is no constant
range. This indicates heteroscedasticity.

Figure 3.1. The standardized deviance residuals of the simple model for
urban carriageways, based on the Poisson distribution against log(AADT ).

log(AADT )

R
es

id
ua

ls

SWOV publication R-2006-14

SWOV Institute for Road Safety Research - Leidschendam, the Netherlands

17



Figure 3.2. The standardized deviance residuals of the simple model for
urban carriageways, based on the Poisson distribution against log(L).
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The second plot type is a plot of the standardized deviance residuals against
the linear predictor, see Figure 3.3. The null pattern of this plot is the same as
for the previous type, so the residuals should be scattered around the x-axis
with constant range. In addition, the contours of fixed y (the observed values)
should be ’parallel’ curves. In Figure 3.3 the curves are more or less visible,
but the constant range condition is violated.

Figure 3.3. The standardized deviance residuals of the simple model for
urban carriageways, based on the Poisson distribution against the linear
predictor.
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The third plot type is the so-called QQ-plot. This plot displays the following
points:

{(

Φ−1 (i/304) , DR(i)

)

: i = 1, . . . , 303
}

,

where Φ is the distribution function of the standard normal distribution and
DR(i) is the i-th order statistic of the standardized deviance residuals, i.e.,
the i-th standardized deviance residual when they are ordered in increasing
order. These points should show a scatter around a straight line with slope 1.

Figure 3.4. The QQ-plot for the standardized deviance residuals of the
simple model for urban carriageways, based on the Poisson distribution.

Quantiles N (0, 1)

O
rd

er
st

at
is

tic
s

At first sight, the points in the QQ-plot of the fitted model (Figure 3.4) form
a straight line reasonably well, although not with slope 1. However, drawing
a straight line through them shows that the points are more like a curve
than like a straight line. Therefore the conclusion can be drawn that the
residuals are certainly not standard normally distributed, which means that
the conclusions based on the statistics in Tables 3.2 – 3.4 are questionable.

3.1.2. The negative binomial distribution

In this section the model which is obtained under the assumption that road
crashes are negative binomially distributed will be discussed. The statistics
in Table 3.5 describe the goodness-of-fit of the model. If the deviance is
compared to its χ2

300 distribution a p-value of 0.24 is found. This implies
that the null hypothesis that the fitted model is the right model can not be
rejected on basis of all confidence levels greater than 0.24. A similar but less
convincing result follows from Pearson’s χ2; its p-value is 0.07.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 300 316.8576 1.0562

Pearson’s χ2 300 337.4371 1.1248

Log likelihood 7349.8350

Table 3.5. Criteria for assessing the goodness-of-fit of the simple model for
urban carriageways, based on the negative binomial distribution.
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The estimates for the model parameters and several statistics are given
in Table 3.6. Also 1/ν,the scale parameter of the Gamma distribution, is
estimated.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -8.0049 0.8619 (-9.6942, -6.3155) 86.25 < 0.0001

log(L) 0.9988 0.0415 (0.9174, 1.0801) 578.43 < 0.0001

log(AADT ) 0.3181 0.0815 (0.1584, 0.4778) 15.24 < 0.0001

1/ν 0.5821 0.0828 (0.4199, 0.7443)

Table 3.6. Analysis of the parameter estimates for the simple model for urban
carriageways, based on the negative binomial distribution.

The relation between the expected number of crashes on urban carriageways
in three years, the AADT and carriageway length is given by

µ̂i = e−8.0049 · AADT 0.3181
i · L0.9988

i = 0.00033 · AADT 0.3181
i · L0.9988

i .

Once more, the exponent of L is almost equal to 1. This value is even an
element of the 95%-confidence interval corresponding to log(L). Although
the estimates are not very different from those in Table 3.2, the standard
errors are a factor 2.5 to 2.8 larger. However, the variables still are statistically
significant for all confidence levels higher than 0.0001.

The results of the Type 1 and 3 analyses are stated in the Tables 3.7 and 3.8.
Both analyses indicate that the carriageway length and AADT are statistically
significant for all confidence levels higher than 0.0001.

Source Twice the log likelihood Difference of scaled deviances p-value

Intercept 14320.4013

log(L) 14684.6662 364.26 < 0.0001

log(AADT ) 14699.6700 15.00 0.0001

Table 3.7. Statistics for the Type 1 analysis of the simple model for urban
carriageways, based on the negative binomial distribution.

Source Difference of scaled deviances p-value

log(L) 377.14 < 0.0001

log(AADT ) 15.00 0.0001

Table 3.8. Statistics for the Type 3 analysis of the simple model for urban
carriageways, based on the negative binomial distribution.

Again several plots involving the standardized deviance residuals were
drawn, see Figures 3.5 – 3.8. These scatter plots look better than the scatter
plots corresponding to the Poisson distribution. Indeed, the variance in
Figures 3.6 and 3.7 is smaller than in Figures 3.2 and 3.3. Furthermore,
the scatter plot in Figure 3.8 closely resembles a straight line with slope 1,
although the ends tend to deviate from that line.
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Figure 3.5. The standardized deviance residuals of the simple model for
urban carriageways, based on the negative binomial distribution against
log(AADT ).
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Figure 3.6. The standardized deviance residuals of the simple model for
urban carriageways, based on the negative binomial distribution against
log(L).
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Figure 3.7. The standardized deviance residuals of the simple model for
urban carriageways, based on the negative binomial distribution against the
linear predictor.
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Figure 3.8. The QQ-plot for the standardized deviance residuals of the
simple model for urban carriageways, based on the negative binomial
distribution.
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3.1.3. The quasi-likelihood method

The subject of this section is the model for urban carriageways obtained
by applying the quasi-likelihood method. As explained in the Appendix
this method does not require any assumptions about the underlying
distribution, but only needs an assumption about the variance. In this case
this assumption is that the variance of Yi is given by Var(Yi) = σ2µi, where σ2

is possibly unknown. The parameter σ2 can be estimated with the deviance
or Pearson’s χ2 divided by the number of degrees of freedom. Here the first
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possibility is chosen, resulting in a scaled deviance equal to 1, see Table 3.9.
The deviance and Pearson’s χ2 are the same as for the model based on the
Poisson distribution. However, they are not equal to their scaled versions
anymore, because ϕ is now not equal to 1.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 300 1247.9565 4.1599

Scaled deviance 300 300.0000 1.0000

Pearson’s χ2 300 1459.4956 4.8650

Scaled Pearson’s χ2 300 350.8525 1.1695

Log likelihood 1693.4694

Table 3.9. Criteria for assessing the goodness-of-fit of the simple model for
urban carriageways developed using the quasi-likelihood method.

The estimated values for the intercept and the parameters of the two
explanatory variables are equal to the estimated values under the assumption
that the number of road crashes is Poisson distributed, but the values of
the corresponding statistics are different. These values are given in the
Table 3.10. It is easy to check that the standard errors are indeed a factor σ
larger than in the case of the Poisson distribution. Consequently, Wald’s
95%-confidence intervals are slightly wider as its bounds are given by

Parameter estimate ± ξ0.975σ̂j .

Finally, Wald’s χ2 is a factor σ2 smaller, which follows immediately from its
definition and the fact that the standard errors are a factor σ larger.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -8.4758 0.6958 (-9.8395, -7.1121) 148.40 < 0.0001

log(L) 1.1210 0.0318 (1.0588, 1.1833) 1245.28 < 0.0001

log(AADT ) 0.2703 0.0604 (0.1520, 0.3886) 20.05 < 0.0001

σ =
√

ϕ 2.0396 0.0000 (2.0396, 2.0396)

Table 3.10. Analysis of the parameter estimates for the simple model for
urban carriageways developed using the quasi-likelihood method.

The Type 1 and Type 3 analyses also show that the parameters
corresponding to the logarithms of the AADT and carriageway length are
statistically significant for all confidence levels higher than 0.0001.

Source Deviance Difference of SDs p-value

Intercept 8337.5883

log(L) 1331.8325 1684.13 < 0.0001

log(AADT ) 1247.9565 20.16 < 0.0001

Table 3.11. Statistics for the Type 1 analysis of the simple model for urban
carriageways developed using the quasi-likelihood method.
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Source Difference of scaled deviances p-value

log(L) 1694.44 < 0.0001

log(AADT ) 20.16 < 0.0001

Table 3.12. Statistics for the Type 3 analysis of the simple model for urban
carriageways developed using the quasi-likelihood method.

Also in this case it is possible to give the plots of the standardized deviance
residuals against the explanatory variables and against the linear predictor.
However, from (A.3) it follows that the standardized deviance residuals
are a factor σ smaller, because φ̂ is now equal to σ2 instead of equal to 1.
Hence the plots of the residuals against the explanatory variables and the
linear predictor are similar to Figures 3.1 – 3.3. Due to the decrease of the
standardized deviance residuals their QQ-plot is different than Figure 3.4: the
points form an approximately straight line with slope 1, see Figure 3.9.

Figure 3.9. The QQ-plot for the standardized deviance residuals of the
simple model for urban carriageways developed using the quasi-likelihood
method.
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3.1.4. Discussion

In Sections 3.1.1 – 3.1.3 two different models are derived which describe the
relation between the number of road crashes on urban carriageways in three
years, the AADT and carriageway length. These models are

µ̂i = 0.00021 · AADT 0.2703
i · L1.1210

i , (3.1)

µ̂i = 0.00033 · AADT 0.3181
i · L0.9988

i . (3.2)

Model (3.1) was derived in two different ways: 1) by assuming that the
number of road crashes follows a Poisson distribution, and 2) by applying
the quasi-likelihood method. The quasi-likelihood method is preferred,
because then the model is not affected anymore by overdispersion. However,
the scatter plots of the standardized deviance residuals indicate that
these residuals are not normally distributed with constant variance. So
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the conclusions based on several statistical tests are still doubtful. Under
the assumption that the number of road crashes is negative binomially
distributed, model (3.2) was obtained. This model has two advantages: the
problem of overdispersion is solved and there is no reason to believe that the
standardized deviance residuals are not standard normally distributed with
constant variance.

In both models the exponent of Li is almost equal to 1. For (3.2) the
confidence interval for the parameter of log(L) even contains 1. This implies
that the expected number of road crashes in three years per metre on the i-th
carriageway, given by µ̂i/Li, depends almost only on the AADT:

µ̂i

Li

≈
{

0.00021 · AADT 0.2703
i , for the Poisson model,

0.00033 · AADT 0.3181
i , for the neg. bin. model.

(3.3)

This shows that the expected number of road crashes per kilometre per year,
denoted by τi, is approximately given by

τi ≈
{

0.07 · AADT 0.2703
i , for the Poisson model,

0.11 · AADT 0.3181
i , for the neg. bin. model.

(3.4)

In Figure 3.10 the predicted number of road crashes per kilometre per year,
as given in (3.4), is plotted against the AADT for the Poisson based and the
negative binomial based model. It follows that the negative binomial model
generally gives a higher risk than the Poisson model. The different shapes of
the two plots is explained by the fact that the exponent of Li in model (3.2) is
much closer to 1 than the one in model (3.1).

Figure 3.10. The predicted number of road crashes per kilometre per year
against the AADT for urban carriageways.
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It is possible to develop a model such that µ̂i/Li (and hence τi) does not
depend on the carriageway length at all, namely by defining log(L) as an
offset variable. An offset variable is a variable whose parameter is set equal
to 1. If log(L) is taken as an offset variable, then the resulting models for τi
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are

τi =

{

0.38 · AADT 0.1960
i , for the Poisson model,

0.11 · AADT 0.3186
i , for the neg. bin. model.

For the model based on the negative binomial distribution almost nothing has
changed compared to (3.3). The Poisson based model, however, did change
considerably. The exponent of AADT even lies outside the confidence
interval given in Table 3.2. The new models are plotted in Figure 3.11. This
plot shows that the crash rates predicted by both models do not differ much.

Figure 3.11. The predicted number of road crashes per kilometre per year
against the AADT for urban carriageways with log(L) as an offset variable.
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3.2. Rural carriageways

3.2.1. The Poisson distribution

The goodness-of-fit of the model for rural carriageways under the assumption
that the number of road crashes is Poisson distributed is described in
Table 3.13. The deviance and Pearson’s χ2 are approximately twice as
large as the number of degrees of freedom. This indicates the presence of
overdispersion.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 95 185.9737 1.9576

Pearson’s χ2 95 191.6960 2.0179

Log likelihood 305.0167

Table 3.13. Criteria for assessing the goodness-of-fit of the simple model for
rural carriageways, based on the Poisson distribution.

The parameter estimates and several statistics are given in Table 3.14. The
relation between the expected number of road crashes in three years, the
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carriageway length in metres and the AADT is therefore given by

µ̂i = e−8.1194 · AADT 0.3028
i · L0.9290

i = 0.00030 · AADT 0.3028
i · L0.9290

i .

The confidence interval corresponding to log(L) includes 1, so also for this
model the exponent of L is close to 1. The parameter corresponding to log(L)
is statistically significant for all confidence levels higher than 0.0001. The
parameter corresponding to log(AADT ) is only statistically significant for all
confidence levels higher than 0.0093, which is a less convincing significance.
The standard errors are much larger than those of the parameters of the
Poisson model for urban carriageways. This could be a consequence of the
lower number of available carriageways.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -8.1194 1.1903 (-10.4524, -5.7864) 46.53 < 0.0001

log(L) 0.9290 0.0479 (0.8351, 1.0230) 375.57 < 0.0001

log(AADT ) 0.3028 0.1165 (0.0745, 0.5311) 6.76 0.0093

Table 3.14. Analysis of the parameter estimates for the simple model for rural
carriageways, based on the Poisson distribution.

The results of the Type 1 and Type 3 analyses are summarized in Table 3.15
and 3.16. From the data in these tables it also follows that the parameter
corresponding to log(AADT ) is statistically significant with far less
confidence than the parameter corresponding to log(L).

Source Scaled deviance Difference of SD’s p-value

Intercept 678.6608

log(L) 192.8836 485.78 < 0.0001

log(AADT ) 185.9737 6.91 0.0086

Table 3.15. Statistics for the Type 1 analysis of the simple model for rural
carriageways, based on the Poisson distribution.

Source Difference of scaled deviances p-value

log(L) 483.26 < 0.0001

log(AADT ) 6.91 0.0086

Table 3.16. Statistics for the Type 3 analysis of the simple model for rural
carriageways, based on the Poisson distribution.

The four standard graphs of the standardized deviance residuals are given
in Figures 3.12 – 3.15. These plots show the same problems as the plots in
Section 3.1.1. The plots of the residuals against log(L) and against the linear
predictor do not have the desired pattern: there is no constant variance.
Furthermore, the dots in the QQ-plot do not approximate a straight line,
which leads to the conclusion that the residuals are not normally distributed.
However, the dots are closer to a line with slope 1 than the dots in Figure 3.4.
Hence from the plots it follows that the conclusions based on the performed
statistical tests are questionable.
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Figure 3.12. The standardized deviance residuals of the simple model for
rural carriageways, based on the Poisson distribution against log(AADT ).
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Figure 3.13. The standardized deviance residuals of the simple model for
rural carriageways, based on the Poisson distribution against log(L).
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Figure 3.14. The standardized deviance residuals of the simple model for
rural carriageways, based on the Poisson distribution against the linear
predictor.
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Figure 3.15. The QQ-plot for the standardized deviance residuals of the
simple model for rural carriageways, based on the Poisson distribution.
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3.2.2. The negative binomial distribution

The goodness-of-fit of the model based on the negative binomial distribution
is described in Table 3.17. The deviance and Pearson’s χ2 are smaller
than the number of degrees of freedom, which indicates the presence of
under-dispersion. The underdispersion is however of a low level and hence
not a problem.

SWOV publication R-2006-14

SWOV Institute for Road Safety Research - Leidschendam, the Netherlands

29



Criterion Degrees of freedom (DF) Value Value/DF

Deviance 95 94.1812 0.9914

Pearson’s χ2 95 93.1289 0.9803

Log likelihood 325.4619

Table 3.17. Criteria for assessing the goodness-of-fit of the simple model for
rural carriageways, based on the negative binomial distribution.

The parameter estimates and several statistics are given in Table 3.18. The
relation between the expected number of road crashes on rural carriageways,
the carriageway length and AADT in three years, is therefore

µ̂i = e−10.1934 · AADT 0.4967
i · L0.9647

i = 3.74 · 10−5 · AADT 0.4967
i · L0.9647

i .

The confidence interval corresponding to log(L) again contains 1. The
parameter corresponding to log(L) is statistically significant with very high
confidence. The parameter of log(AADT ) is only statistically significant for all
confidence levels α such that α ≥ 0.0155.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -10.1934 2.0450 (-14.2016, -6.1853) 24.85 < 0.0001

log(L) 0.9647 0.0826 (0.8027, 1.1266) 136.23 < 0.0001

log(AADT ) 0.4967 0.2053 (0.0944, 0.8989) 5.85 0.0155

1

ν
0.3391 0.1190 (0.1058, 0.5723)

Table 3.18. Analysis of the parameter estimates for the simple model for rural
carriageways, based on the negative binomial distribution.

The results of the Type 1 and Type 3 analyses are given in Tables 3.19 and
3.20. The analyses indicate that the parameter corresponding to log(AADT )
is statistically significant for all α ≥ 0.0135.

Source Twice the log likelihood Difference of scaled deviances p-value

Intercept 546.8178

log(L) 644.8201 98.00 < 0.0001

log(AADT ) 650.9237 6.10 0.0135

Table 3.19. Statistics for the Type 1 analysis of the simple model for rural
carriageways, based on the negative binomial distribution.

Source Difference of scaled deviances p-value

log(L) 102.91 < 0.0001

log(AADT ) 6.10 0.0135

Table 3.20. Statistics for the Type 3 analysis of the simple model for rural
carriageways, based on the negative binomial distribution.

In Figures 3.16 – 3.18 the standardized deviance residuals are plotted
against the explanatory variables and the linear predictor. The first plot
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(Figure 3.16) indicates a constant variance of the residuals. The second and
third plot (Figures 3.17 and 3.18) on the other hand, still show an increasing
variance. However, the heteroscedasticity is of a lower level than under the
assumption that the number of road crashes is Poisson distributed.

Figure 3.16. The standardized deviance residuals of the simple model for
rural carriageways, based on the negative binomial distribution against
log(AADT ).

log(AADT )

R
es

id
ua

ls

Figure 3.17. The standardized deviance residuals of the simple model for
rural carriageways, based on the negative binomial distribution against
log(L).
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Figure 3.18. The standardized deviance residuals of the simple model for
rural carriageways, based on the negative binomial distribution against the
linear predictor.
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The QQ-plot is given in Figure 3.19. It better resembles a straight line
than the QQ-plot in Figure 3.15 and there is no reason to believe that the
standardized deviance residuals are not standard normally distributed.

Figure 3.19. The QQ-plot for the standardized deviance residuals of the
simple model for rural carriageways, based on the negative binomial
distribution.
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3.2.3. The quasi-likelihood method

The goodness-of-fit of the model developed with the quasi-likelihood method
is described in Table 3.21. The quasi-likelihood parameter σ2 is estimated
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by the deviance divided by the number of degrees of freedom. It follows that
σ2 = ϕ = 1.9576.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 95 185.9737 1.9576

Scaled deviance 95 95.000 1.0000

Pearson’s χ2 95 191.6960 2.0179

Scaled Pearson’s χ2 95 97.9231 1.0308

Log likelihood 155.8101

Table 3.21. Criteria for assessing the goodness-of-fit of the simple model for
rural carriageways developed using the quasi-likelihood method.

The parameter estimates are the same as for the Poisson based model.
They are stated in Table 3.22, together with several statistics. Because the
standard errors have increased, the statistical significance of the parameters
decreased. This is especially obvious for the parameter corresponding to the
variable log(AADT ). Its p-value increased from 0.0093 to 0.0632.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -8.1194 1.6654 (-11.3836, -4.8552) 23.77 < 0.0001

log(L) 0.9290 0.0671 (0.7976, 1.0605) 191.85 < 0.0001

log(AADT ) 0.3028 0.1630 (-0.0167, 0.6222) 3.45 0.0632

σ =
√

ϕ 1.3991 0.0000 (1.3991, 1.3991)

Table 3.22. Analysis of the parameter estimates for the simple model for rural
carriageways developed using the quasi-likelihood method.

The results of the Type 1 and Type 3 analyses are summarized in Tables 3.23
and 3.24. They also show that the statistical significance of log(AADT )
decreased.

Source Deviance Difference of SD’s p-value

Intercept 678.6608

log(L) 192.8836 248.15 < 0.0001

log(AADT ) 185.9737 3.53 0.0633

Table 3.23. Statistics for the Type 1 analysis of the simple model for rural
carriageways developed using the quasi-likelihood method.

Source Difference of scaled deviances p-value

log(L) 246.86 < 0.0001

log(AADT ) 3.53 0.0633

Table 3.24. Statistics for the Type 3 analysis of the simple model for rural
carriageways developed using the quasi-likelihood method.

In Section 3.1.3 it was already stated that the QQ-plot for the standardized
deviance residuals resulting from the quasi-likelihood method is different than
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for those following from the Poisson distribution. Therefore the QQ-plot is
given in Figure 3.20.

Figure 3.20. The QQ-plot for the standardized deviance residuals of the
simple model for rural carriageways developed using the quasi-likelihood
method.
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3.2.4. Discussion

In Sections 3.2.1 – 3.2.3 two different models are derived which describe the
relation between the number of road crashes on urban carriageways in three
years, the AADT and carriageway length. These models are

µ̂i = 0.00030 · AADT 0.3028
i · L0.9290

i , (3.5)

µ̂i = 3.74 · 10−5 · AADT 0.4967
i · L0.9647

i . (3.6)

Model (3.5) was derived in two different ways: 1) by assuming that the
number of road crashes follows a Poisson distribution and 2) by applying
the quasi-likelihood method. As for urban carriageways the quasi-likelihood
method is preferred, because it deals with overdispersion. However, the
standardized deviance residuals do not follow a normal distribution with
standard variance. There is no reason to believe that the residuals resulting
from model (3.6), which was obtained under the assumption that the
number of road crashes is negative binomially distributed, are not normally
distributed.

In both models the exponent of L is almost equal to 1, which was also the
case in the models for urban carriageways. For all three modelling methods
(based on Poisson, or negative binomial distribution, or the quasi-likelihood
method) the 95%-confidence interval even contained 1. It follows that µ̂i/Li

depends almost only on the AADT:

µ̂i

Li

≈
{

0.00030 · AADT 0.3028
i , for Poisson model,

3.74 · 10−5 · AADT 0.4967
i , for negative binomial model.

Hence τi, which stands for the number of crashes per kilometre per year, is
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approximately given by

τi ≈
{

0.10 · AADT 0.3028
i , for Poisson model,

0.012 · AADT 0.4967
i , for negative binomial model.

In Figure 3.21 τi is plotted against the AADT. It follows that the negative
binomial model gives in general a lower risk for low AADT and a higher risk
for high AADT than the Poisson model.

Figure 3.21. The predicted number of road crashes per kilometre per year
against the AADT for rural carriageways.
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In order to remove the dependency of µ̂i/Li on L, log(L) is taken as an offset
variable, which means that its coefficient is set equal to 1. The resulting
models for τi are

τi =

{

0.047 · AADT 0.3223
i , for the Poisson model,

0.009 · AADT 0.5029
i , for the negative binomial model.

These models are plotted in Figure 3.22. For lower AADTs both models are
very close, but for higher AADTs the negative binomial model tends to predict
a larger number of road crashes than the Poisson model.
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Figure 3.22. The predicted number of road crashes per kilometre per year
against the AADT for rural carriageways with log(L) as an offset variable.
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3.3. Comparison of the simple models

It is interesting to compare the models for urban carriageways to the models
for rural carriageways. A first conclusion is that the derived models for urban
carriageways are more reliable than the models for rural carriageways. This
follows from the following two observations:
– The explanatory variables for all models for urban carriageways are

statistically significant for all confidence levels higher than 0.0001. This
is not the case for the models for rural carriageways. For those models,
the variable log(AADT ) is only statistically significant for relatively high
confidence levels.

– The standard errors of the parameter estimates for the models for rural
carriageways are about a factor 2 to 4 higher than for the models for urban
carriageways.

This is possibly a consequence of the number of available carriageways: the
database contained three times more information about urban carriageways
than about rural carriageways.

Secondly, for urban carriageways as well as for rural carriageways the
exponent of L in the developed models is reasonable close to 1. For four
of the six models 1 is even contained in the 95%-confidence interval
corresponding to the variable log(L). Hence the number of crashes on urban
and rural carriageways is approximately proportional to the carriageway
length. By including log(L) in the model as an offset variable, its exponent is
forced to be equal to 1.

The exponent of AADT is different for the models for urban and rural
carriageways. For the Poisson based model this exponent is 0.2703 for urban
and 0.3028 for rural carriageways whereas for the negative binomial based
model it is equal to 0.3181 for urban and to 0.4967 for rural carriageways.
Therefore it can be concluded that the effect of the AADT on the number of
crashes is larger for rural carriageways than for urban carriageways. This
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difference in effect is especially clear for the negative binomial based model.

Finally, it is also possible to compare the modelled risk of urban and rural
carriageways. For an easy comparison the obtained models for τi with log(L)
as an offset variable are plotted in Figure 3.23. It follows that the modelled
risk for urban carriageways is higher than the risk for rural carriageways for
equal AADT.

Figure 3.23. The predicted number of road crashes per kilometre per year
against the AADT.
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4. The extended model

In this chapter models of the type (2.3) will be discussed. Again separate
models are modelled for urban carriageways (Section 4.1) and rural
carriageways (Section 4.2), by using three different modelling techniques:
Poisson based, negative binomial based and the quasi-likelihood method.

4.1. Urban carriageways

4.1.1. The Poisson distribution

The goodness-of-fit of the model based on the Poisson distribution is
described in Table 4.1. The overdispersion is of a slightly lower level than
for the Poisson based model for urban carriageways with two explanatory
variables, see Table 3.1.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 299 1132.5283 3.7877

Pearson’s χ2 299 1285.2341 4.2984

Log likelihood 7102.3012

Table 4.1. Criteria for assessing the goodness-of-fit of the extended model
for urban carriageways, based on the Poisson distribution.

Table 4.2 gives the parameter estimates together with several statistics. It
follows that the predicted number of road crashes in three years on urban
carriageways is given by:

µ̂i = 4.5408 · 10−7 · L1.0915
i · AADT 1.0406

i · e−0.0581·
AADTi

1000 . (4.1)

All variables are statistically significant for all confidence levels higher than
0.0001. Also for this model, the exponent of L is not very different from 1,
although the confidence interval does not contain 1. The confidence interval
corresponding to log(AADT ) does contain 1, but due to the presence of
AADT/1000 this has no special meaning.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -14.6050 0.7085 (-15.9937, -13.2163) 424.90 < 0.0001

log(L) 1.0915 0.0157 (1.0607, 1.1223) 4821.88 < 0.0001

log(AADT ) 1.0406 0.0822 (0.8795, 1.2018) 160.21 < 0.0001

AADT /1000 -0.0581 0.0058 (-0.0695, -0.0466) 99.37 < 0.0001

Table 4.2. Analysis of the parameter estimates for the extended model for
urban carriageways, based on the Poisson distribution.

A Type 1 and Type 3 analysis are also conducted. The results are given
in Tables 4.3 and 4.4. These results also lead to the conclusion that the
variables are statistically significant for all confidence levels higher than
0.0001.
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Source Twice the log likelihood χ2 p-value

Intercept 8337.5883

log(L) 1331.8325 7005.76 < 0.0001

log(AADT ) 1247.9565 83.88 < 0.0001

AADT /1000 1132.5283 115.43 < 0.0001

Table 4.3. Statistics for the Type 1 analysis of the extended model for urban
carriageways, based on the Poisson distribution.

Source χ2 p-value

log(L) 6736.48 < 0.0001

log(AADT ) 183.15 < 0.0001

AADT/1000 115.43 < 0.0001

Table 4.4. Statistics for the Type 3 analysis of the extended model for urban
carriageways involving based on the Poisson distribution.

The Type 1 analysis can also be used to decide whether or not the extended
model is an improvement of the simple model. In Section 3.1.1 it was
explained that in a Type 1 analysis a sequence of models is fitted, starting
with the model only containing the intercept. In each step an explanatory
variable is added to the model. If the p-value of an added variable is smaller
than a chosen confidence level α, then the null hypothesis that the parameter
of this variable is equal to zero can be rejected. This means that the model
with this additional variable is an improvement of the model without it.

In the Type 1 analysis for (4.1) first log(L) is added to the model only
containing the intercept, then log(AADT ) and finally AADT/1000.
From Table 4.3 it follows that the null hypothesis that the parameter of
AADT/1000 is equal to zero can be rejected with high confidence. Indeed,
the corresponding p-value is smaller than 0.0001. Hence, model (4.1) fits the
data better than the model with only the intercept, log(L) and log(AADT )
as explanatory variables. This last model is exactly the simple model of
Section 3.1, from which it follows that the extended model is better than the
simple model.

Similar to Chapter 3 the standardized deviance residuals will be studied by
means of several plots. The plots of the standardized deviance residuals
against the explanatory variables and the linear predictor are given in
Figures 4.1 – 4.4. Specially Figures 4.2 and 4.4 do not have the shape they
should have: they show an increasing variance of the residuals. Although
the shape is similar to the shape of the plots in Figures 3.1 – 3.3, it seems
that the residuals corresponding to (4.1) are slightly smaller than those
corresponding to the model discussed in Section 3.1.1.
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Figure 4.1. The standardized deviance residuals of the extended model for
urban carriageways, based on the Poisson distribution against log(AADT ).
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Figure 4.2. The standardized deviance residuals of the extended model for
urban carriageways, based on the Poisson distribution against log(L).
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Figure 4.3. The standardized deviance residuals of the extended model for
urban carriageways, based on the Poisson distribution against AADT .
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Figure 4.4. The standardized deviance residuals of the extended model for
urban carriageways, based on the Poisson distribution against the linear
predictor.
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The QQ-plot is shown in Figure 4.5. Because the dots deviate from a straight
line with slope 1, it cannot be concluded that the standardized deviance
residuals are standard normally distributed.
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Figure 4.5. The QQ-plot for the standardized deviance residuals of the
extended model for urban carriageways, based on the Poisson distribution.
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4.1.2. The negative binomial distribution

The goodness-of-fit of the model based on the negative binomial distribution
is described by the statistics in Table 4.5. It follows that overdispersion is not
present in this model. Indeed, if the values of the deviance and Pearson’s χ2

are compared to their χ2
299 distribution, then p-values of 0.21 and 0.14 are

found.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 299 318.3506 1.0647

Pearson’s χ2 299 325.2484 1.0878

Log likelihood 7353.9790

Table 4.5. Criteria for assessing the goodness-of-fit of the extended model
for urban carriageways, based on the negative binomial distribution.

The parameter estimates and various statistics are given in Table 4.6. The
model for the number of road crashes in three years on urban carriageways is

µ̂i = 5.8880 · 10−6 · L0.9875
i · AADT 0.8181

i · e−0.0375·
AADTi

1000 .

For this model 1 is contained in the confidence intervals corresponding
to log(L). Further, the variables log(L) and log(AADT ) are statistically
significant with higher confidence than the variable AADT/1000, but they are
all three statistically significant for confidence level α = 0.0035.
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Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -12.0426 1.6318 (-15.2409, -8.8442) 54.46 < 0.0001

log(L) 0.9875 0.0411 (0.9070, 1.0679) 578.51 < 0.0001

log(AADT ) 0.8181 0.1895 (0.4466, 1.1895) 18.63 < 0.0001

AADT /1000 -0.0375 0.0129 (-0.0627, -0.0124) 8.53 0.0035

1

ν
0.5463 0.0801 (0.3893, 0.7032)

Table 4.6. Analysis of the parameter estimates for the extended model for
urban carriageways, based on the negative binomial distribution.

The results of the Type 1 and Type 3 analyses are given in Tables 4.7 and
4.8. These results indicate that the statistical significance of the variables
log(L) and log(AADT ) is of a higher level than the statistical significance of
AADT/1000. Furthermore, the Type 1 analysis indicates that the model fitted
in this section is an improvement of the model of Section 3.1.2.

Source Twice the log likelihood χ2 p-value

Intercept 14320.4013

log(L) 14684.6662 364.26 < 0.0001

log(AADT ) 14699.6700 15.00 0.0001

AADT /1000 14707.9579 8.29 0.0040

Table 4.7. Statistics for the Type 1 analysis of the extended model for urban
carriageways, based on the negative binomial distribution.

Source χ2 p-value

log(L) 372.12 < 0.0001

log(AADT ) 17.87 < 0.0001

AADT /1000 8.29 0.0040

Table 4.8. Statistics for the Type 3 analysis of the extended model for urban
carriageways, based on the negative binomial distribution.

The plots of the standardized deviance residuals against the explanatory
variables and the linear predictor are given in Figures 4.6 – 4.9. These scatter
plots show less dependency from the residuals on the explanatory variables
and linear predictor than the scatter plots for the residuals of the Poisson
based model, discussed in the previous section. There is not a big difference
between Figures 4.6 – 4.9 and Figures 3.5 – 3.7.
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Figure 4.6. The standardized deviance residuals of the extended model for
urban carriageways, based on the negative binomial distribution against
log(AADT ).
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Figure 4.7. The standardized deviance residuals of the extended model for
urban carriageways, based on the negative binomial distribution against
log(L).
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Figure 4.8. The standardized deviance residuals of the extended model for
urban carriageways, based on the negative binomial distribution against
AADT .
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Figure 4.9. The standardized deviance residuals of the extended model for
urban carriageways, based on the negative binomial distribution against the
linear predictor.
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The QQ-plot (Figure 4.10) strongly resembles a straight line, which indicates
that the standardized deviance residuals indeed are standard normally
distributed.
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Figure 4.10. The QQ-plot for the standardized deviance residuals of the
extended model for urban carriageways, based on the negative binomial
distribution.
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4.1.3. The quasi-likelihood method

The model based on the Poisson distribution can also be obtained by
applying the quasi-likelihood method. The dispersion parameter is again
estimated by the deviance divided by the number of degrees of freedom. The
goodness-of-fit of the obtained model is described in Table 4.9.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 299 1132.5283 3.7877

Scaled deviance 299 299.0000 1.0000

Pearson’s χ2 299 1285.2341 4.2984

Scaled Pearson’s χ2 299 339.3160 1.1348

Log likelihood 1875.0861

Table 4.9. Criteria for assessing the goodness-of-fit of the extended model
for urban carriageways developed using the quasi-likelihood method.

In Table 4.10 the parameter estimates and the corresponding statistics are
stated. The parameter estimates are equal to the ones in Table 4.2. Although
the standard errors in Table 4.10 are larger than the standard errors in
Table 4.2, and hence the statistical significance of the variables is smaller, the
variables still are statistically significant for all confidence levels higher than
0.0001.
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Parameter Estimate Standard Wald’s 95% χ2 p-value

error confidence interval

Intercept -14.6050 1.3789 (-17.3077, -11.9023) 112.18 < 0.0001

log(L) 1.0915 0.0306 (1.0315, 1.1514) 1273.03 < 0.0001

log(AADT ) 1.0406 0.1600 (0.7270, 1.3543) 42.30 < 0.0001

AADT /1000 -0.0581 0.0113 (-0.0803, -0.0358) 26.23 < 0.0001

σ 1.9462 0.0000 (1.9462, 1.9462)

Table 4.10. Analysis of the parameter estimates for the extended model for
urban carriageways developed using the quasi-likelihood method.

From the Type 1 and Type 3 analyses it also follows that the variables are
statistically significant with high confidence, see Tables 4.11 and 4.12. The
statistical significance of AADT/1000 again shows that adding this variable
improves the model.

Source Deviance χ2 p-value

Intercept 8337.5883

log(L) 1331.8325 1849.60 < 0.0001

log(AADT ) 1247.9565 22.14 < 0.0001

AADT /1000 1132.5283 30.47 < 0.0001

Table 4.11. Statistics for the Type 1 analysis of the extended model for urban
carriageways developed using the quasi-likelihood method.

Source χ2 p-value

log(L) 1778.51 < 0.0001

log(AADT ) 48.35 < 0.0001

AADT /1000 30.47 < 0.0001

Table 4.12. Statistics for the Type 3 analysis of the extended model for urban
carriageways developed using the quasi-likelihood method.

The QQ-plot of the standardized deviance residuals is given in Figure 4.11.
Except for the middle and the end, the dots in this plot are close to the line
with slope 1.
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Figure 4.11. The QQ-plot for the standardized deviance residuals of the
extended model for urban carriageways developed using the quasi-likelihood
method.
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4.1.4. Discussion

In Sections 4.1.1 – 4.1.3 two different models are derived which describe the
relation between the number of road crashes on urban carriageways over a
period of three years, the AADT and carriageway length. These models are

µ̂i = 4.5408 · 10−7 · L1.0915
i · AADT 1.0406

i · e−0.0581·
AADTi

1000 , (4.2)

µ̂i = 5.8880 · 10−6 · L0.9875
i · AADT 0.8181

i · e−0.0375·
AADTi

1000 . (4.3)

Model (4.2) was obtained in two different ways: assuming that the
number of road crashes follows a Poisson distribution and by applying the
quasi-likelihood method. This last method is preferred, because it solves
the overdispersion problem. Under the assumption that the number of
road crashes is negative binomially distributed model (4.3) was obtained.
This model is not affected by overdispersion either. Furthermore, the plots
involving the standardized deviance residuals of this second model are better,
i.e., are closer to the desired form, than those of the first model.

Similar to the simple models for urban carriageways, the exponents of L
in both models are close to 1. For the negative binomial based model this
value is even included in the confidence interval. Therefore the following
approximation holds:

µ̂i

Li

≈
{

4.5408 · 10−7 · AADT 1.0406
i · e−0.0581·

AADTi
1000 , Poisson,

5.8880 · 10−6 · AADT 0.8181
i · e−0.0375·

AADTi
1000 , neg. bin.

So the models for τi (the number of road crashes per kilometre per year) are
approximately

τi ≈
{

1.51 · 10−4 · AADT 1.0406
i · e−0.0581·

AADTi
1000 , Poisson,

1.96 · 10−3 · AADT 0.8181
i · e−0.0375·

AADTi
1000 , neg. bin.
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These models are plotted in Figure 4.12. In general, the model based on the
negative binomial distribution predicts a higher risk for high AADT than the
model based on the Poisson distribution.

Figure 4.12. The predicted number of road crashes per kilometre per year
against the AADT for urban carriageways.
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In order to obtain models in which µ̂i/Li does not depend on L the variable
log(L) is included in the model as an offset variable. The resulting models for
τi are:

τi =

{

3.30 · 10−4 · AADT 1.0467
i · e−0.0637·

AADTi
1000 , Poisson,

1.77 · 10−3 · AADT 0.8193
i · e−0.0373·

AADTi
1000 , neg. bin.

These expressions are plotted in Figure 4.13. This plot also shows the
difference between the risk predicted by the Poisson based and by the
negative binomial based model for high AADT. The shape of these plots
obviously is more like the shape of Figures 2.1 and 2.2 than that of
Figure 3.22 does.
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Figure 4.13. The predicted number of road crashes per kilometre per year
against the AADT for urban carriageways with log(L) as an offset variable.
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4.2. Rural carriageways

4.2.1. The Poisson distribution

The goodness-of-fit of the Poisson based model for rural carriageways is
described by the statistics in Table 4.13. The overdispersion is slightly less
than in the Poisson based model involving only two explanatory variables for
rural carriageways.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 94 180.8276 1.9237

Pearson’s χ2 94 179.7388 1.9121

Log likelihood 307.5897

Table 4.13. Criteria for assessing the goodness-of-fit of the extended model
for rural carriageways, based on the Poisson distribution.

Table 4.14 contains the parameter estimates together with several statistics.
It follows that the model for rural carriageways is given by:

µ̂i = 3.78 · 10−8 · L0.9133
i · AADT 1.4058

i · e−0.0956·
AADTi

1000 .

The variables log(L) and log(AADT ) are statistically significant with
relative high confidence, whereas AADT/1000 is statistically significant for
confidence levels higher than 0.02841 Furthermore, the confidence interval
for log(L) does contain 1.
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Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -17.0912 4.3002 (-25.5194, -8.6631) 15.80 < 0.0001

log(L) 0.9133 0.0478 (0.8196, 1.0070) 364.81 < 0.0001

log(AADT ) 1.4058 0.5189 (0.3888, 2.4228) 7.34 0.0067

AADT /1000 -0.0956 0.0436 (-0.1811, -0.0101) 4.81 0.0284

Table 4.14. Analysis of the parameter estimates for the extended model for
rural carriageways, based on the Poisson distribution.

The Type 1 and Type 3 analyses give the same results, see Tables 4.15 and
4.16. From the Type 1 analysis it follows that if AADT/1000 is added to the
model only containing the intercept, log(L), and log(AADT ) as explanatory
variables, we can conclude that its parameter is not equal to zero, in other
words, that adding log(AADT ) improves the model. Indeed, its p-value is
0.0233.

Source Twice the log likelihood χ2 p-value

Intercept 678.6608

log(L) 192.8836 485.78 < 0.0001

log(AADT ) 185.9737 6.91 0.0086

AADT/1000 180.8276 5.15 0.0233

Table 4.15. Statistics for the Type 1 analysis of the extended model for rural
carriageways, based on the Poisson distribution.

Source χ2 p-value

log(L) 478.30 < 0.0001

log(AADT ) 8.03 0.0046

AADT/1000 5.15 0.0233

Table 4.16. Statistics for the Type 3 analysis of the extended model for rural
carriageways, based on the Poisson distribution.

The standardized deviance residuals are plotted against the explanatory
variables and the linear predictor in Figures 4.14 – 4.17. They are very much
similar to Figures 3.12 – 3.14. Also the QQ-plot did not change considerably,
compare Figures 4.18 and 3.15. Therefore, adding the extra term to the
model did not improve the behaviour of the residuals.
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Figure 4.14. The standardized deviance residuals of the extended model for
rural carriageways, based on the Poisson distribution against log(AADT ).
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Figure 4.15. The standardized deviance residuals of the extended model for
rural carriageways, based on the Poisson distribution against log(L).
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Figure 4.16. The standardized deviance residuals of the extended model for
rural carriageways, based on the Poisson distribution against AADT .
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Figure 4.17. The standardized deviance residuals of the extended model
for rural carriageways, based on the Poisson distribution against the linear
predictor.
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Figure 4.18. The QQ-plot for the standardized deviance residuals of the
extended model for rural carriageways, based on the Poisson distribution.
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4.2.2. The negative binomial distribution

In this section the results for the model based on the negative binomial
distribution are given. From the deviance and Pearson’s χ2 it follows that
there is no overdispersion, Pearson’s χ2 even indicates underdispersion, see
Table 4.17. Comparing the value of the deviance to its χ2

94 distribution gives a
p-value of 0.4531, showing that the null hypothesis that the considered model
is the right model, cannot be rejected.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 94 94.9517 1.0101

Pearson’s χ2 94 92.1315 0.9801

Log likelihood 326.4145

Table 4.17. Criteria for assessing the goodness-of-fit of the extended model
for rural carriageways, based on the negative binomial distribution.

The parameter estimates and the corresponding statistics are given in
Table 4.18. So the model for rural carriageways is given by:

µ̂i = 7.52 · 10−9 · L0.9588
i · AADT 1.5407

i · e−0.0940·
AADTi

1000

Again the exponent of L is close to 1, this value is even included in the
95%-confidence interval corresponding to log(L). The variables log(L) and
log(AADT ) are statistically significant with reasonably high confidence.
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Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -18.7059 6.5065 (-31.4583, -5.9534) 8.27 0.0040

log(L) 0.9588 0.0812 (0.7997, 1.1179) 139.49 < 0.0001

log(AADT ) 1.5407 0.7827 (0.0067, 3.0747) 3.88 0.0490

AADT /1000 -0.0940 0.0673 (-0.2259, 0.0378) 1.95 0.1621

1

ν
0.3112 0.1132 (0.0892, 0.5331)

Table 4.18. Analysis of the parameter estimates for the extended model for
rural carriageways, based on the negative binomial distribution.

The same conclusion can be drawn from the results of the Type 1 and Type 3
analysis, see Tables 4.19 and 4.20. The Type 1 analysis indicates that the
confidence of AADT/1000 is far less than that of the other two variables. The
null hypothesis that adding AADT/1000 to the model is not an improvement,
can not even be rejected.

Source Twice the log likelihood χ2 p-value

Intercept 546.8178

log(L) 644.8201 98.00 < 0.0001

log(AADT ) 650.9237 6.10 0.0135

AADT /1000 652.8290 1.91 0.1675

Table 4.19. Statistics for the Type 1 analysis of the extended model for rural
carriageways, based on the negative binomial distribution.

Source χ2 p-value

log(L) 103.59 < 0.0001

log(AADT ) 3.82 0.0507

AADT /1000 1.91 0.1675

Table 4.20. Statistics for the Type 3 analysis of the extended model for rural
carriageways, based on the negative binomial distribution.

Also the scatter plots of the residuals against the explanatory variables and
the linear predictor are given, see Figures 4.19 – 4.22.
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Figure 4.19. The standardized deviance residuals of the extended model
for rural carriageways, based on the negative binomial distribution against
log(AADT ).
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Figure 4.20. The standardized deviance residuals of the extended model
for rural carriageways, based on the negative binomial distribution against
log(L).
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Figure 4.21. The standardized deviance residuals of the extended model
for rural carriageways, based on the negative binomial distribution against
AADT .
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Figure 4.22. The standardized deviance residuals of the extended model for
rural carriageways, based on the negative binomial distribution against the
linear predictor.
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Figure 4.23. The QQ-plot for the standardized deviance residuals of the
extended model for rural carriageways, based on the negative binomial
distribution.
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4.2.3. The quasi-likelihood method

The last model to be discussed in this chapter is the one obtained by
applying the quasi-likelihood method. As before, the dispersion parameter is
estimated by the deviance divided by the number of degrees of freedom. The
goodness-of-fit statistics are given in Table 4.21.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 94 180.8276 1.9237

Scaled deviance 94 94.0000 1.0000

Pearson’s χ2 94 179.7388 1.9121

Scaled Pearson’s χ2 94 93.4340 0.9940

Log likelihood 159.8951

Table 4.21. Criteria for assessing the goodness-of-fit of the extended model
for rural carriageways developed using the quasi-likelihood method.

The parameter estimates are the same as for the model based on the
Poisson distribution. They are given, together with the changed statistics, in
Table 4.22. The statistical significance of the variables decreased, which is
easy to see for log(AADT ) and AADT/1000. The variable log(L) is still
statistically significant for all confidence levels higher than 0.0001.
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Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -17.0912 5.9642 (-28.7808, -5.4016) 8.21 0.0042

log(L) 0.9133 0.0663 (0.7833, 1.0433) 189.64 < 0.0001

log(AADT ) 1.4058 0.7197 (-0.0048, 2.8163) 3.82 0.0508

AADT /1000 -0.0956 0.0605 (-0.2142, -0.0230) 2.50 0.1140

σ 1.3870 0.0000 (1.3870, 1.3870)

Table 4.22. Analysis of the parameter estimates for the extended model for
rural carriageways developed using the quasi-likelihood method.

The Type 1 and Type 3 analyses show that adding the variables log(AADT )
and AADT/1000 to the model, does not statistically significantly improve the
fit of the model.

Source Deviance χ2 p-value χ2

Intercept 678.6608

log(L) 192.8836 252.52 < 0.0001

log(AADT ) 185.9737 3.59 0.0611

AADT /1000 180.8276 2.68 0.1053

Table 4.23. Statistics for the Type 1 analysis of the extended model for rural
carriageways developed using the quasi-likelihood method.

Source χ2 p-value

log(L) 248.64 < 0.0001

log(AADT ) 4.18 0.0438

AADT /1000 2.68 0.1053

Table 4.24. Statistics for the Type 3 analysis of the extended model for rural
carriageways developed using the quasi-likelihood method.

The QQ-plot of the standardized deviance residuals is given in Figure 4.24.
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Figure 4.24. The QQ-plot for the standardized deviance residuals of the
extended model for rural carriageways developed using the quasi-likelihood
method.

Quantiles N (0, 1)

O
rd

er
st

at
is

tic
s

4.2.4. Discussion

In Sections 4.2.1 – 4.2.3 two different models are derived which describe the
relation between the number of road crashes on urban carriageways in three
years, the AADT, and carriageway length. These models are

µ̂i = 3.78 · 10−8 · L0.9133
i · AADT 1.4058

i · e−0.0956·
AADTi

1000 , (4.4)

µ̂i = 7.52 · 10−9 · L0.9588
i · AADT 1.5407

i · e−0.0940·
AADTi

1000 . (4.5)

Model (4.4) was derived in two different ways: 1) by assuming that the
number of road crashes follows a Poisson distribution and 2) by applying the
quasi-likelihood method. Under the assumption that the number of road
crashes is negative binomially distributed, model (4.5) was obtained.

Like before, the exponents of L in both models are close to 1. For the
negative binomial and quasi-likelihood based model 1 is even contained in
the confidence interval. Hence

µ̂i

Li

≈
{

3.78 · 10−8 · AADT 1.4058
i · e−0.0956·

AADTi
1000 , Poisson,

7.52 · 10−9 · AADT 1.5407
i · e−0.0940·

AADTi
1000 , neg. bin.

and

τi ≈
{

1.26 · 10−5 · AADT 1.4058
i · e−0.0956·

AADTi
1000 , Poisson,

2.50 · 10−6 · AADT 1.5407
i · e−0.0940·

AADTi
1000 , neg. bin.

In Figure 4.25 the values of τi are plotted against the AADT.
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Figure 4.25. The predicted number of road crashes per kilometre per year
against the AADT for rural carriageways.
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In order to obtain models in which µ̂i/Li does not depend on L the variable
log(L) is included in the model as an offset variable. The resulting models for
τi are:

τi =

{

1.33 · 10−5 · AADT 1.3103
i · e−0.0852·

AADTi
1000 , Poisson,

1.94 · 10−6 · AADT 1.5353
i · e−0.0930·

AADTi
1000 , neg. bin.

These expressions are plotted in Figure 4.26.

Figure 4.26. The predicted number of road crashes per kilometre per year
against the AADT for rural carriageways with log(L) as an offset variable.
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4.3. Comparison of the extended models

It is interesting to compare the models for urban carriageways to the models
for rural carriageways. A first conclusion is that the derived models for urban
carriageways are more reliable than the models for rural carriageways. This
follows from the following two observations:
– For all models, the explanatory variables for urban carriageways are

statistically significant for all confidence levels higher than 0.0001, except
for AADT/1000 in the negative binomial model. For the models for rural
carriageways only log(L) is statistically significant for all confidence levels
higher than 0.0001.

– The standard errors of the parameter estimates for the models for rural
carriageways are generally much larger than for the models for urban
carriageways.

This is possibly a consequence of the number of available carriageways:
the database contained information of almost three times more urban
carriageways than rural carriageways.

Secondly, for urban carriageways as well as for rural carriageways, the
exponent of L in the developed models is reasonable close to 1. However,
this value is included in the confidence interval corresponding to log(L) for
only three of the six models. Hence the number of crashes on urban and rural
carriageways is approximately proportional to the carriageway length. By
including log(L) in the model as an offset variable its exponent is forced to be
equal to 1.

Finally, it is also possible to compare the modelled risk of urban and rural
carriageways. For an easy comparison the obtained models for τi with log(L)
as an offset variable are plotted in Figure 3.23. It follows that the modelled
risk for urban carriageways is higher than the risk for rural carriageways for
equal AADT. This was already well-known.

Figure 4.27. The predicted number of road crashes per kilometre per year
against the AADT.

AADT

R
oa

d
cr

as
he

s
pe

r
ki

lo
m

et
re

62 SWOV publication R-2006-14

SWOV Institute for Road Safety Research - Leidschendam, the Netherlands



5. Models for the other road types

5.1. Introduction

In Table 2.1 the crash rates for different carriageway types in Haaglanden
were given. Chapters 3 and 4 showed that for urban and rural carriageways
crash rate heavily depends on the AADT: the crash rate decreases when the
AADT increases. This is possibly also the case for further disaggregations of
the selection of carriageways. Therefore it would be informative to develop
accident prediction models for each carriageway type given in Table 2.1.
A problem is that the database does not contain sufficient data for each
type of carriageway to make fitting reliable accident prediction models
possible. In this chapter, models will be fitted for the types for which sufficient
carriageways are available and some plots will be made for some of the other
carriageway types to indicate the differences in crash rate for the different
carriageway types.

5.2. Carriageways of urban dual carriageway roads with a speed li mit of 50 km/h

In this section a model will be fitted for carriageways of urban dual
carriageway distributor roads, with a speed limit of 50 km/h, one lane and one
driving direction. The database contains 138 carriageways satisfying these
conditions. Based on the results in Chapters 3 and 4 and on Figure 5.1 it was
decided to use the negative binomial distribution and the extended model
form.

Figure 5.1. The number of road crashes per kilometre per year in each AADT
class for carriageways of urban dual carriageway roads, with a speed limit of
50 km/h, one lane and one driving direction.
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The modelling results are given in Tables 5.1 – 5.4. The deviance indicates
that the hypothesis that the fitted model is the correct model cannot be
rejected on basis of the confidence level α = 0.05, because its p-value is
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0.0771. The p-value corresponding to Pearson’s χ2, however, is equal to
0.0009, from which this conclusion can not be drawn.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 133 156.8821 1.1796

Pearson’s χ2 133 189.9423 1.4281

Log likelihood 4049.3505

Table 5.1. Criteria for assessing the goodness-of-fit of the model for
carriageways of urban dual carriageway roads, with a speed limit of 50 km/h,
one lane and one driving direction.

From Tables 5.2 – 5.4 it follows that the parameter estimates are reasonably
statistically significant, except maybe the parameter corresponding with
AADT/1000. A model was also fitted without this variable. The deviance and
Pearson’s χ2 were slightly higher for this model, indicating a less adequate fit.
Therefore the variable was kept in the model.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -10.9144 2.3271 (-15.4753, -6.3534) 22.00 < 0.0001

log(L) 1.0067 0.0584 (0.8922, 1.1212) 296.90 < 0.0001

log(AADT ) 0.6523 0.2677 (0.1276, 1.1770) 5.94 0.0148

AADT /1000 -0.0279 0.0170 (-0.0611, 0.0054) 2.70 0.1005

1

ν
0.4719 0.1091 (0.2582, 0.6857)

Table 5.2. Analysis of the parameter estimates for the model for urban
carriageways of of dual carriageway roads, with a speed limit of 50 km/h, one
land and one driving direction.

Source Deviance χ2 p-value χ2

Intercept 7918.9947

log(L) 8091.2635 172.27 < 0.0001

log(AADT ) 8096.0405 4.78 0.0288

AADT /1000 8098.7010 2.66 0.1029

Table 5.3. Statistics for the Type 1 analysis of the model for carriageways of
urban dual carriageway roads, with a speed limit of 50 km/h, one lane and
one driving direction.

Source χ2 p-value

log(L) 170.53 < 0.0001

log(AADT ) 5.71 0.0169

AADT /1000 2.66 0.1029

Table 5.4. Statistics for the Type 3 analysis of the model for carriageways of
urban dual carriageway roads, with a speed limit of 50 km/h, one lane and
one driving direction.
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Because the parameter of log(L) is very close to 1, the number of road
crashes per kilometre per year, denoted by τi is approximately given by

τi ≈ 6.06 · 10−3 · AADT 0.6523
i · e−0.0279·

AADTi
1000 .

The right hand-side of this expression is plotted in Figure 5.2.

Figure 5.2. The number of road crashes per kilometre per year for
carriageways of urban dual carriageway roads, with a speed limit of 50 km/h,
one lane and one driving direction.
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5.3. Carriageways of urban single carriageway roads with a speed limit of 50 km/h

In this section a model will be fitted for carriageways of urban single
carriageway distributor roads, with a speed limit of 50 km/h, two lanes and
two driving directions. The database contains 122 carriageways satisfying
these conditions. According to the results in Chapters 3 and 4 and to
Figure 5.3 the negative binomial distribution and the extended model form
were used.
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Figure 5.3. The number of road crashes per kilometre per year in each AADT
class for carriageways of urban single carriageway roads, with a speed limit
of 50 km/h, two lanes and two driving directions.

AADT

R
oa

d
cr

as
he

s
pe

r
ki

lo
m

et
re

The variable AADT/1000 was however not statistically significant at all
(p = 0.8854). An explanation might be that the decreasing part of Figure 5.3 is
only based on nine carriageways and hence not very reliable. Therefore the
model is fitted on the 113 carriageways with an AADT smaller than 30,000.
The results are given in Tables 5.5 – 5.8. Both the deviance and Pearson’s χ2

indicate that the hypothesis that the fitted model is the correct model with high
confidence. Their corresponding p-values is 0.18.

Criterion Degrees of freedom (DF) Value Value/DF

Deviance 110 123.3214 1.1211

Pearson’s χ2 110 123.1570 1.1196

Log likelihood 3266.3493

Table 5.5. Criteria for assessing the goodness-of-fit of the model for
carriageways of urban single carriageway roads, with a speed limit of 50
km/h, two lanes and two driving directions.

From Table 5.6 – 5.8 it follows that all the parameter estimates are highly
statistically significant. The parameter of log(L) is again close to 1.

Parameter Estimate Standard Wald’s 95% Wald’s χ2 p-value

error confidence interval

Intercept -11.4869 1.2514 (-13.9397, -9.0342) 84.25 < 0.0001

log(L) 1.0538 0.0601 (0.9361, 1.1715) 307.87 < 0.0001

log(AADT ) 0.6808 0.1215 (0.4427, 0.9188) 31.42 < 0.0001

1

ν
0.3509 0.0961 (0.1626, 0.5392)

Table 5.6. Analysis of the parameter estimates for the model for
carriageways of urban single carriageway roads, with a speed limit of 50
km/h, two lanes and two driving directions.
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Source Deviance χ2 p-value χ2

Intercept 6362.6223

log(L) 6506.0608 143.44 < 0.0001

log(AADT ) 6532.6986 26.64 < 0.0001

Table 5.7. Statistics for the Type 1 analysis of the model for carriageways of
urban single carriageway roads, with a speed limit of 50 km/h, two lanes and
two driving directions.

Source χ2 p-value

log(L) 167.14 < 0.0001

log(AADT ) 26.64 < 0.0001

Table 5.8. Statistics for the Type 3 analysis of the model for carriageways of
urban single carriageway roads, with a speed limit of 50 km/h, two lanes and
two driving directions.

Because the parameter of log(L) is very close to 1, the number of road
crashes per kilometre per year, denoted by τi is approximated by

τi ≈ 3.42 · 10−3 · AADT 0.6808
i .

The right hand-side of this expression is plotted in Figure 5.4.

Figure 5.4. The number of road crashes per kilometre per year for
carriageways of urban single carriageway roads, with a speed limit of 50
km/h, two lanes and two driving directions.
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5.4. Rural carriageways with a speed limit of 80 km/h and one drivi ng direction

The database contains only 16 rural carriageways with a speed limit of 80
km/h and one driving direction. This is not enough to fit a reliable model. Only
the number of crashes per kilometre per year is computed, for the AADT
classes introduced in Chapter 2. Three of these classes are empty. The result
is given in Figure 5.5.
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Figure 5.5. The number of road crashes per kilometre per year in each AADT
class for rural carriageways with a speed limit of 80 km/h and one driving
direction.
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5.5. Rural carriageways with a speed limit of 80 km/h and two drivi ng directions

The database only contains 38 rural carriageways with a speed limit of 80
km/h and two driving directions. This is not enough to fit a reliable model.
Only the number of crashes per kilometre per year is computed, for the AADT
classes introduced in Chapter 2. The three highest classes are empty. The
result is given in Figure 5.6.

Figure 5.6. The number of road crashes per kilometre per year in each AADT
class for rural carriageways with a speed limit of 80 km/h and two driving
directions.
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5.6. Discussion

In Figure 5.7 the graphs of the models in this chapter are combined to
make comparisons easier. For the carriageways for which a model was not
developed, the corresponding values in Table 2.1 are added to the graph.
From this graph it follows that for low AADTs the crash rate of carriageways
with a speed limit of 50 km/h is the same for both the single and dual
carriageway types. For high AADTs the carriageways with only one driving
direction are much safer than carriageways with two driving directions. For
rural carriageways with a speed limit of 80 km/h also carriageways with only
one driving direction are safer than carriageways with two directions. It can
also be seen that roads with a speed limit of 80 km/h with a large traffic flow
(above 18,000 motorverhicles per day) have two carriageways with one
driving directions each. Based on the points for carriageways with a 70 km/h
and 60 km/h it can be concluded that inside urban areas carriageways with a
speed limit of 70 km/h are safer than those with a speed limit of 50 km/h and
that outside urban areas the crash rates of carriageways with a speed limit of
60 km/h and 80 km/h with two driving directions are not very different.

Figure 5.7. The number of road crashes per kilometre per year for four
different carriageway types.
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6. Conclusions and recommendations

6.1. The structure of the models

In this study two model structures were tried, namely

µi = eα · AADT β1

i · Lβ2

i (6.1)

and
µi = β0 · AADT β1

i · Lβ2

i · eβ3·
AADTi

1000 . (6.2)

Model (6.1) was directly based on APMs found in the literature. However, in
Chapter 2 it was showed that this form is not appropriate for the datasets
containing all urban or all rural carriageways. Hence also models of the form
(6.2) were developed for these sets. It turned out that these models did not
only have the desired structure, but adding the variable AADT/1000 was
indeed an improvement of the models for urban carriageways. In Chapter 5
other road types were considered and it followed that for the carriageways of
single carriageway roads, with a speed limit of 50 km/h the simple model type
6.1 was suitable.

This illustrates that it should always be checked if a particular model type is
appropriate for the data, instead of just fitting a model as described in the
literature. Therefore plots of the form of Figures 2.1 and 2.2 are advized to
get an idea of the most appropriate model type.

6.2. Modelling technique

In this report generalized linear modelling techniques are used to develop
the accident prediction models. This what is called GLM is widely accepted
for application in road safety modelling. At first a model can be fitted based
on the assumption that the number of road crashes is Poisson distributed,
which is a reasonable assumption. However, in practice it is often the case
that such a model is affected by overdispersion, meaning that the variance
exceeds the mean. If this is the case it is better to fit another model, now
based on the assumption that the number of road crashes is negative
binomially distributed. Another solution to the overdispersion problem is to
use the quasi-likelihood method.

The technique based on the negative binomial distribution did have a positive
side-effect. Besides solving the overdispersion problem, it also improved
the behaviour of the standardized deviance residuals. These should be
normally distributed, because the statistical tests performed on the parameter
estimates are only reliable if this is the case.

6.3. Practical use

Road authorities can use accident prediction models to investigate the safety
level of their roads. If they know the values of the explanatory variables (in
this report the AADT and the length) for a particular carriageway, the APM
can be used to compute the expected number of crashes on that carriageway.
This computed value can be considered as an average number of crashes on
a selection of roads for which the values of the explanatory variables are
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equal to those of the carriageway under consideration. So if this computed
number is lower than the actual number of road crashes on that carriageway,
the carriageway can be considered being too unsafe. To exclude the
possibility that the numbers are different by coincidence, a statistical test
should be used to test the significance of the difference. Wood (2005) gives
95%-confidence intervals for predictions made by a generalized linear model.
For the prediction ŷi the interval is given by

[

0,

⌊

µ̂i +
√

19

√

µ̂2
i Var(η̂i) +

µ̂2
i Var(η̂i) + µ̂2

i

ν̂
+ µ̂i

⌋]

,

where ⌊x⌋ denotes the largest integer smaller than or equal to x. If an
observed value of the number of crashes on a certain carriageway is outside
this interval, then it deviates statistically significant from the predicted value.
This means that the carriageway under investigation has a higher risk than
expected on basis of the model. An explanation for this high risk can be found
by using detailed information on road and traffic characteristics and road user
behaviour. Because the left boundary of the confidence interval is 0, the
conclusion can never be that a certain carriageway has a lower risk than
expected.

Accident prediction models can also be used to compare different road types,
as was done in this report. The following conclusions may be drawn from
these comparisons:
– for AADT ≤ ±25000 carriageways inside urban areas generally have a

higher crash rate than carriageways outside urban areas, see Figure 4.27;
– carriageways with a speed limit of 50 km/h or 80 km/h and one driving

direction have a lower crash rate than carriageways with a the same
speed limit but with two driving directions;

– the average risk of urban carriageways with a speed limit of 70 km/h is
lower than the crash rate of carriageways with a speed limit of 50 km/h
and the average crash rate of rural carriageways with a speed limit of 60
km/h is almost the same as the crash rate of rural carriageways with a
speed limit of 80 km/h and two driving directions.

The higher crash rate for carriageways inside urban areas can possibly be
explained by the precense of pedestians and bicycles. However, in general it
is known that roads inside urban areas have a lower crash rate than roads
outside urban areas. The last conclusion also seems to be counterintuitive,
because decreasing speed limits are expected to decrease the crash rate.
However, this last conclusion only says that the carriageways in Haaglanden
with lower speed limits do not necessarily have lower crash rates than
carriageways with higher speed limits. It does not suggest that decreasing
the speed limit increases the crash rate. For this type of conclusion before
and afters studies are necessary. A perfectly logical explanation for this lower
crash rate at higher speed limits is that the carriageways in the data collection
only have a higher speed limit if it is safe to have such a limit. In other words,
they are designed to be safe at a higher speed limit.

6.4. Further research

The research described in this report is a first attempt to develop accident
prediction models for different road types. It was only possible to develop
statistically significant models for all urban and all rural carriageways and for
urban carriageways with a speed limit of 50 km/h and one or two driving
directions. It is desirable to develop models for other, further disaggregated,
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road types. For this purpose more data is needed. Collecting the necessary
data is very time consuming. It especially takes a long time to collect data
about traffic volume, because for this purpose traffic has to be counted for
a lengthy period of time. Some of the Dutch provinces have this data (due
to permanent counting stations on their roads) and were prepared to share
this data with the SWOV. At present, models for two different provincial road
types (single and dual carriageways) are developed for two of the Dutch
provinces: Noord-Holland and Gelderland. The models for Noord-Holland
are of a different type than those for Haaglanden and Gelderland. Instead of
taking the AADT as an explanatory variable, the amount of motorized traffic
per hour is considered. The results for the two provinces will be reported by
Janssen & Reurings (2007) and Reurings & Janssen (2007).

Future research can be conducted on datasets of other regions like, for
example, provinces or municipalities. An interesting question which arises is
whether or not similar models will be found for different regions. If this is the
case, then models can be developed for all regions together. An advantage of
this is that more data is available that can be used to developed the models
on, so more road types can be considered. If no similar models are found,
explanations must be found for the differences between the regions.

It is also interesting to develop accident prediction models for intersections.
In this report intersections were not considered separately, they were
considered to be a part of the carriageways. The crashes which happened
on intersections were included in the number of crashes on the carriageway.
By developing APMs for intersections of different types, the crash rates of
these types can be compared. To make this possible, data is needed about
both the major and minor traffic flows on each intersection and about several
characteristics of the intersections. Especially this last information was not
included in the Haaglanden database.

In the SWOV-project Infrastructure and Road Safety it was decided to develop
models for different road types separately instead of developing one model for
all roads together, including a lot of explanatory variables. The reason for this
is that a large number of explanatory variables decreases the meaning and
understanding of their estimated parameters, because the variables can be
correlated. As a consequence, parameters may be in the opposite direction
from the one safety engineers normally presume for those variables. This
problem can be solved by developing models with only two variables (length
and AADT) for different road types, as was done in this report. This has the
disadvantage that a lot of data is needed. Harwood et al. (2000) solved the
problem in a different way, they follow several steps:
– First a model is developed based on the extended data base HSIS,

including several explanatory variables.
– Then fixed values for the explanatory variables (except the exposition) are

entered in the model which results in the what is called base model.
– For other values of the explanatory variables the base model must be

multiplied by the so-called accident modification factors. They represent
the incremental effects of individual characteristics of roads and were
developed by two expert panels based on their expert judgement and
literature reviewing.

– The number of crashes on a road segment found in the previous step are
entered, together with the crash site-specific crash history, in an Empirical
Bayes procedure to get the predicted number of crashes on that road
segment.
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It may be interesting to investigate the usefulness of this procedure and
especially the accident modification factors in the Netherlands.
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Appendix Generalized linear modelling

General theory

Before going into the theoretical background of generalized linear modelling,
the used notation will be introduced. The capitals U, X, Y, Z, with or without
indices, are always stochastic variables. Their realisations will be denoted by
u, x, y, z, also possibly with indices. If a symbol is typeset in boldface then it is
a vector, for example Y = (Y1, . . . , Yn)T is a stochastic vector consisting of n
components. Finally, a circumflex indicates an estimate or a prediction, i.e., ŷ
is the predicted value of y.

Let Y be an n-dimensional stochastic vector with independently distributed
components Y1, . . . , Yn and let y be the vector with the observed values of Y.
The mean of Y is given by µ = (µ1, . . . , µn)T where µi = E(Yi), i = 1, . . . , n.
The mean µ can be specified in terms of p variables of which the values are
given by x1, . . . ,xp, i.e., the i-th element of xj is the value of the j-th variable
corresponding to µi. In case of ordinary linear regression Yi is assumed to
be normally distributed with mean µi and constant variance σ2. Further, µi is
supposed to be a linear combination of xi1, . . . , xip :

µi = β0 +

p
∑

j=1

xijβj , i = 1, . . . , n, (A.1)

for unknown parameters β0, . . . , βp. By allowing x0 be a vector with each
entry equal to 1, (A.1) can be rewritten as

µ =

p
∑

j=0

xjβj or µi =

p
∑

j=0

xijβj , i = 1, . . . , n. (A.2)

The parameters are estimated by means of the ordinary least squares
method. From (A.2) it follows that

Yi =

p
∑

j=0

xijβj + ei,

where ei is a normally distributed stochastic variable with mean 0 and
variance σ2 for i = 1, . . . , n. The ei’s are called the error terms and can be
estimated by the residuals, i.e.,

êi = yi − ŷi,

where ŷi is the value of Yi predicted by the model.

If the components of Y are not normally distributed with constant variance
or if the relation between the mean µ and the explanatory variables is not a
linear one, then use can be made of generalized linear modelling. Like the
traditional linear models, these models consist of a linear predictor η :

η =

p
∑

j=0

xjβj .

However, the relation between the mean µ of the dependent variable Y and
the linear predictor η is not necessarily given by the equality µ = η,
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but by g(µi) = ηi for i = 1, . . . , n, where g is a monotone and differentiable
map called the link function.

The parameters β0, . . . , βp of a generalized linear model are estimated with
the maximum likelihood method, which coincides with the ordinary least
squares method in case of normally distributed error terms. The maximum
likelihood method involves maximizing the log likelihood function l(µ;y) over
β0, . . . , βp to get estimates for the parameters β0, . . . , βp. The log likelihood
function is given by

l(µ;y) =
n
∑

i=1

li(yi; µi) =
n
∑

i=1

log fi(yi; µi),

where fi(yi; µi) is the distribution of Yi given the parameter µi.

Generalized linear models require the distribution of Yi to originate from an
exponential family. The distribution f of a stochastic variable X is said to
come from an exponential family if it has the following form:

f(x) = e
xθ−b(θ)

a(ϕ)
+c(x,ϕ).

Here a, b and c are the functions which determine the specific distribution.
The function a is usually of the form

a(ϕ) =
ϕ

w
,

where ϕ is constant over the observations and w is a known weight which
can vary from observation to observation. In general w = 1. The mean and
variance of a stochastic variable X which has f as its distribution function are

E(X) = µ = b′(θ), Var(X) =
b′′(θ)ϕ

w
.

The variance of X can now be expressed in µ through the variance function
V (·) :

Var(X) =
V (µ)ϕ

w
.

The parameter ϕ is called the dispersion parameter of the distribution.

The goodness-of-fit of a model can be measured in several ways. One way
is by the scaled deviance, D∗(y, µ̂), where µ̂ is the value of µ predicted by
the model. The scaled deviance is equal to twice the difference between the
maximum achievable value of the log likelihood function and the achieved
value of this function by the model under consideration. So the scaled
deviance is

D∗(y, µ̂) = 2(l(µ̂;y) − l(y;y)).

D∗(y, µ̂) is called the scaled deviance because it is equal to the deviance
D(y, µ̂) divided by the dispersion parameter. In formula

D∗(y, µ̂) =
D(y, µ̂)

ϕ
.

Another goodness-of-fit measure is Pearson’s χ2, which is defined as follows:

χ2 =

n
∑

i=1

(yi − µ̂i)
2

V (µ̂i)
.
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Analogously to the deviance the scaled Pearson’s χ2 is defined as Pearson’s
χ2 divided by ϕ.

Under the assumption that the fitted model is true, the scaled versions of both
the deviance and Pearson’s χ2 are approximately χ2

n−p−1 distributed. For this
reason the scaled deviance and the scaled Pearson’s χ2 can be used to
estimate the dispersion parameter ϕ in case its value is unknown. Indeed, the
mean of D∗ is equal to n − p − 1 because D∗ is χ2

n−p−1 distributed. Setting
D∗ = n − p − 1 and solving D∗ = D/ϕ for ϕ, leads to

ϕ̂ =
D

n − p − 1
.

A similar expression can be deduced for Pearson’s χ2. If many of the
predicted expected values of Y are smaller than 1, then it is possible
that the scaled deviance is much smaller than the number of degrees of
freedom. Hence the scaled deviance can not be used as a measure for
the goodness-of-fit of the model. In this case Pearson’s χ2 can be used.
Pierce & Schafer (1986) tried to answer the question why Pearson’s χ2 often
has a distribution closer to χ2 than the deviance, although the deviance
residuals, which will be discussed later, perform excellently. They pointed
out that having a more nearly χ2 distribution is not directly connected to
being the better measure of overall goodness-of-fit. Hence they suggest that
the deviance should provide a better basis for goodness-of-fit tests than
Pearson’s χ2 in spite of common assertions to the contrary.

According to McCullagh & Nelder (1983) the difference between the
deviances of nested models can be approximated by a χ2distribution better
than the deviances themselves, even if µ̂i < 1 for many values of i. This can
be used to test if an extended model has a better fit than the more simple
model. To show this, suppose that M1 is a model with p explanatory variables
and that M2 is an extended model with p + q explanatory variables. The
question is whether or not M2 has a better fit than M1. The difference of
deviances D1 − D2, where Di is the deviance of model Mi, is approximately
χ2

q distributed under the assumption that M1 is at least as good as M2. Hence
if the probability

P(X ≥ D1 − D2),

under the assumption that M1 is at least as good as M2, is smaller than the
confidence level α (equivalent, if D1 − D2 is larger than the critical value
corresponding to α), the null hypothesis can be rejected and hence the
conclusion is that M2 is significantly better than M1.

In ordinary linear regression the residuals can be used to check the
assumptions of the model. They should be independent normally distributed
variables with constant variance. If these conditions are not satisfied, the
conclusions about the statistical significance of the estimated parameters
might be too optimistic. If generalized linear modelling is applied to the data,
the residuals will not meet the three conditions mentioned above. However, in
this case there is another type of residuals which behaves like the residuals in
ordinary linear regression and can therefore be used to check the adequacy
of the fit of the model. This type of residuals consists of the standardized
deviance residuals which are defined as follows:

DRi =

√
di(sign(yi − µ̂i))
√

ϕ̂(1 − hi)
, (A.3)
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where di is the contribution of the i-th observation to the deviance and hi is
the i-th diagonal entry of the matrix

W
1
2 X(XT WX)−1XT W

1
2 ,

with W = diag(µ̂1, . . . , µ̂n) and X is the design matrix. The numerators
of (A.3) are called the deviance residuals. The division by

√

ϕ̂(1 − hi)
causes the resulting DR1, . . . , DRn to have constant variance. If the fitted
model is correct, the (standardized) deviance residuals are approximately
normally distributed. An example of the application of deviance residuals in
generalized linear models is given by Pregibon (1981).

In the next section the application of generalized linear modelling to road
crashes is described.

The application to road crashes

The Poisson distribution

In general, road crashes are considered to be Poisson distributed, which
means that the number of road crashes is described by a Poisson distributed
stochastic variable. The idea behind this thought is as follows. If for example
a car enters an intersection, there are two possibilities: either a crash does
occur or it does not. This can be described by the stochastic variable X which
satisfies

X =

{

1 (an accident occurs), with probability p,

0 (an accident does not occur), with probability 1 − p.

The variable Z, defined as the number of 1’s in N samples, is binomially
distributed, so

P(Z = z) =

(

N

z

)

pz(1 − p)N−z, z = 0, 1, . . . , N.

If N is very large and p is very small, which holds for road crashes, the
binomial distribution is approximately a Poisson distribution with parameter
λ = N · p. In formula,

P(Z = z) =

(

N

z

)(

λ

N

)z (

1 − λ

N

)N−z

−→ λz

z!
e−λ if N → ∞.

This is indeed the density function of the Poisson distribution. The Poisson
distribution comes from the exponential family with ϕ = 1, θ = log λ, b(θ) = eθ,
c(z, θ) = − log(z!) and V (µ) = µ. Because ϕ = 1, the deviance and Pearson’s
χ2 corresponding to a model based on Poisson distributed variables are
equal to their scaled versions.

Now consider a collection of n road segments or n intersections. The number
of road crashes on the i-th segment or intersection in a certain fixed period
is described by the Poisson distributed stochastic variable Yi. The relation
between µi, the expected value of Yi, and the explanatory variables is

log(µi) =

p
∑

i=0

xijβj , i = 1, . . . , n.
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The parameters β0, . . . , βp are estimated with the maximum likelihood
estimates, which are determined by maximizing the following log likelihood
function over β0, . . . , βp :

l(y; µ) =

n
∑

i=1

(yi · log(µi) − µi).

As mentioned earlier, ϕ = 1 for the Poisson distribution. However, in practice
it is often the case that the deviance and Pearson’s χ2, under the assumption
that the number of road crashes is Poisson distributed, are much larger
than the number of degrees of freedom, which means that ϕ > 1. This
phenomenon is called overdispersion, because in this case the variance is
larger than expected on the basis of the chosen distribution. Hence, the
hypothesis that the estimated model (based on the Poisson distribution) is the
right one, is rejected if one of the probabilities

P(X ≥ D(y, µ̂)), P(X ≥ Pearson’s χ2),

where X is a χ2
n−p distributed stochastic variable, is smaller than the chosen

confidence level α.

It is also possible that the deviance (or Pearson’s χ2) is smaller than the
number of degrees of freedom. This is called underdispersion. This is much
less a problem than overdispersion, because it is not really a problem if there
is less variance than expected. Therefore, a statistical test is not necessary.
However, if the underdispersion is very high one should be careful, because
then there is probably something wrong with the data.

The assumption that the number of road crashes is Poisson distributed
is questionable if overdispersion is the case. In the next sections two
alternatives will be discussed.

The Gamma en negative binomial distribution

One explanation for overdispersion is that the components of Y are indeed
Poisson distributed, but that the means µ1, . . . , µn are not constant: they vary
between the different road segments and/or intersections in an (imaginary)
selection for which x0, . . . ,xp have the same values. Hence it can be
assumed that the means of the Poisson distributions are stochastic variables
themselves, e.g. Λ1, . . . , Λn.

Generally nothing is known about the distribution of Λ1, . . . , Λn. However, it
is often assumed that they are Gamma distributed (Arbous & Kerrich, 1951;
Newbold, 1927). Some theoretical and psychological background for this
assumption is provided by Abbess, Jarrett & Wright (1981) and Maycock
(s.a.). Under the assumption that Λi is Gamma distributed with E(Λi) = µi

and Var(Λi) = ν, the variable Yi has a negative binomial distribution, so

P(Yi = yi) =
Γ(ν + yi)

Γ(ν)yi!

(

ν

ν + µi

)ν (
µi

ν + µi

)yi

and

E(Yi) = µi, Var(Yi) = µi +
µ2

i

ν
.
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This distribution also originates from the exponential family with
b(θ) = −ν log(1 − eθ), θ = log(µi/(ν + µi) and α(ϕ) = 1. The deviance
and Pearson’s χ2 are equal to the scaled versions, similar to the Poisson
distribution.

The model to be fitted is of the same type as the model based on the Poisson
distribution. In other words, the link function for a model based on the
negative binomial distribution is g(x) = log(x). The parameters β0, . . . , βp are
estimated with the maximum likelihood method. The log likelihood function
corresponding to the negative binomial distribution is

l(y; µ) =

n
∑

i=1

log

(

Γ(ν + yi)

Γ(ν)yi!

)

− (yi + ν) log

(

ν + µi

ν

)

+ yi log
(µi

ν

)

.

In the case of negative binomial distribution, not only the parameters
β0, . . . , βp have to be estimated, but also the parameter ν. In the literature this
is done by first developing a model based on the Poisson distribution and
then estimating ν using the residuals of this model. The derived value of ν is
then used to fit a model based on the negative binomial distribution. Now ν
is again estimated, using the residuals of the new model, and again a new
model is fitted. This procedures is repeated until the dispersion parameter
is close enough to 1. In the GENMOD procedure of SAS the parameter ν
can be estimated directly by maximising the log likelihood function and the
described iteration is not necessary.

The assumption that the stochastic variables Λi is Gamma distributed, is
quite strong. Although it leads to a nice distribution for Yi it is not based on
any theoretical or practical knowledge. A probably more insightful way to
tackle the overdispersion problem is the quasi-likelihood method, which is
discussed in the next section.

The quasi-likelihood method

An advantage of using the quasi-likelihood method as opposed to using the
Gamma distribution is that it only requires an assumption about the variance
of Yi, not about the underlying distribution.

Assuming that the components of Y are independent and that the mean and
variance of the components are given by

E(Yi) = µi, Var(Yi) = σ2Vi(µi),

where σ2 is allowed to be unknown and V is a known function. The factor σ2

is hence playing the role of the overdispersion parameter ϕ. The stochastic
variables

Ui =
Yi − µi

σ2Vi(µi)

have the following properties:

E(Ui) = 0, Var(Ui) =
1

σ2Vi(µi)
, −E

(

∂Ui

∂µi

)

=
1

σ2Vi(µi)
.

Because the asymptotical theory of likelihood functions is based on these
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properties, it is no surprise that the integral

Qi(µi; yi) =

∫ µi

yi

yi − t

σ2Vi(t)
dt

behaves like a log likelihood function for µi (when it exists). The integral Qi is
called the quasi-likelihood function for µi based on yi. The quasi-likelihood for
the complete vector Y based on the vector of observations y is

Q(µ; y) =

n
∑

i=1

Qi(µi; yi).

For many variance functions V the sum of integrals Q coincides with the
log likelihood function of a known distribution. The parameters β0, . . . , βp

can hence be estimated by maximizing Q. Two possible estimates for the
unknown σ2 are the deviance and Pearson’s χ2, both divided by the number
of degrees of freedom.

In case of the number of road crashes it is assumed that Var(Yi) = σ2µi, i.e.,
that Vi(µi) = µi for i = 1, . . . , n. The quasi-likelihood for µi based on yi is then

Qi(µi; yi) = yi · log(µi) − µi.

This is exactly the log likelihood function for the Poisson distribution. So
maximising Q gives exactly the same values of β0, . . . , βp as in the standard
Poisson model. The expected variances and scaled deviance are different:
the variances are now a factor σ2 larger and the scaled deviance is a factor σ
smaller.
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