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\ Summary 

Road safety research is a wonderful combination of counting fatal accidents and 
using a toolkit containing prior, posterior, overdispersed Poisson, negative binomial 
and Gamma distributions, together with positive and lNtative regression effects, 
shrinkage estimators and fiercy debates concerning the phenomenon of accident 
migration. Accidents are counted at the level of, e.g., roun dcbouts of some specific 
architecture and also over all roundabouts. For any individual roundabout a 
Poisson distribution is used to assess its 'unsafety'; for the mean of the accidents 
over roundabouts of the same architecture, a Gamma distribution is used. The 
combination of the two leads to a mixed distribution, 'a negative binominaJ 
distribution' for the accidents for all roundabouts together. Methodological 
problems are the regression effect. the apparent reduction of fatal accidents after 
remedial treatment. the selection of. e.g., roundabouts, for remedial treatment. and 
assessing the influence of the remedial treatment. For the selection of systems for 
remedial treatment, decision theoretical concepts like 'false' and 'correct' positives 
and negatives are used. 
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1. Introduction 

This report is an account of research at SWOV Institute for Road Safety 
Research in the field of road safety research, inspired by papers like Abbess, 
Jarrett & Wright (1981), Jarren, Abbess & Wright (1982), Hauer (1980, 1986, 
1992, 1995), Hauer & Persaud (1983, 1984, 1987), Robbins (1950, 1951, 
1956, 1964, 1977, 1980a,b.c) - among many others - and starting with 
Abous & Kerrich's (1951) influential paper in Biometrics. This research is a 
wonderful combination of practice in the sense of counting fatal accidents in 
e.g., the county of Hertfordshire, and a typical set of analytical tools which 
go under names as 'prior' or 'posterior', 'overdispersed Poisson', 'negative 
binomial', 'Gamma', 'negative regression effect', 'accident proneness vs 
liability', etc. Although many papers have been published in various 
scientific periodicals on methodological issues in road safety research, I 
couldn't find a comprehensive book or overview on this subject. The aim of 
this paper is to give an overview of the most influential paradigms and 
techniques in road safety research. This may explain the selection of the 
papers for discussion in this study. In the following, we first give an overview 
of some general issues like estimating 'unsafety', the effect of remedial 
treatment and regression to the mean, the expected number of accidents and 
accident migration. 

Central topics in road safety research with related statistical characteristics, are 
e.g., the estimation of 'unsafety', the expected frequency of accidents at 
road sections, at intersections, or of drivers, etc.; identification of unsafe 
traffic entities; estimating the effect of remedial treatment of unsafe traffic 
systems, including the possibility of migration of accidents, and prediction of 
the frequency of future accidents. Apart from the un safety due to road 
characteristics, at least some 'unsafety' is due to personal factors. There is a 
difference between accident proneness (depending on psycho-physiolog'Jcal 
qualities, such as health, age. fatigue. experience, use of alcohol and drugs) 
and accident liability (due to environmental factors. e.g., exposition: number 
of kilometers per year). The accident-prone person is regarded as one who 
has many accidents: at home, at work, on the public highways, and is in fact a 
sort of 'calamity Joe' (Arbous & Kerrich, 1951). although others deny the 
existence of such a person (Koomstra, 1978; Asmussen & Kranenburg, 
1985). 

The hypothesis of 'chance distribution' assumes that accidents occur to 
individuals by pure chance, leading to the Poisson distribution for the 
distribution of accidents. Although numbers of accidents in two subsequent 
periods each may follow the Poisson distribution, they may not follow a 
Poisson distribution when taken together: they may follow a negative 
binomial distribution. The hypothesis of unequal liabilities results in groups 
being nonhomogeneous in their sustainability of accidents, and leads to the 
negative binomial distribution instead of the Poisson distribution. 

Different hypotheses use different forms of the negative binomial 
distribution. which has become a standard for the analysis of accident data . 
Many of the related problems regard sets of Poisson distributed variables 
with different Poisson parameters (A). Both in pure Bayes and in Empirical 
Bayes (EB) estimation, the parameter value (A) itself is regarded as a 
realisation of a random variable A having a Gamma distribution, G(A), the 
prior distribution. In the pure Bayes approach, G(A) is not necessarily 
interpreted in terms of relative frequencies. but in the EB approach it is given 
a frequency interpretation (Robbins, 19.56). Also, the availability of previous 
data. suitable of estimation of G(A ), is assumed. The EB estimation ru11e 
generally depends on all past and current observed accident frequencies (X) . 
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1.1. Estimation of 'Unsafety' 

'Unsafety' is an attribute of a specific road section, intersection. a driver. etc. 
The estimation of unsafety is by assessing numbers of accidents (corrected 
for intensity cL traffic) and their negative consequences. Counting numbers 
of fatalities is an estimate of unsafety, but often not an unbiased one , because 
of the effect of 'regression to the mean'. For example, when selecting a 
roundabout that had a very bad accident record last year, we expect. 0 n 
average, less accidents for that roundabout next year, if nothing changes. 

Numbers of accidents x at a fixed location are often assumed to be Poisson 
distributed. These sites are combined into a group, but within the group. the 
average numbers J.. for the separate sites may show variation (see above) . The 
effectiveness of remedial measures is based on the comparison between 
accident frequencies before and after treatment · However, this comparison is 
complicated by a number of factors, such as regression-to-the-mean and. 
possibly, accident migration (Boyle & Wright, 1984, 1985; Persaud. 1984; 
Maher, 1987, 1990). Because accident frequencies at distinct sites withr~ a 
group do vary, the distribution of accidents at these sites is not exactly 
Poisson distributed, but may be better characterised by an 'overdispersed' or 
'compound' Poisson distribution (Arbous et al .• 1951; Robbins. 1951. 
1956). If the Poisson parameters follow a Gamma distribution. the accidents 
within the groups follow a negative binomial distribution. 

The unknown accident rate at a blackspot is regarded as the value of a 
random variable having a probability distribution (Jarrett et al.. 1982). This 
distribution is regarded as the 'prior distribution' for this blackspot. Given 
the known accident frequency over a recent period, this 'prior' distribution 
is converted into a 'posterior' distribution using Bayes' theorem. If the prior 
distribution is a Gamma distribution, and if the number of accidents is 
Poisson distributed, then the posterior distribution is again a Gamma 
distribution (Robbins, 1956; Gipps. 1980; Abbess et al., 1981; Jarrett et al., 
1982). The parameters of the posterior distribution, j(J..lx), are easily derived 
from the prior distribution, j(J..). and the observed data, j(x I A). The mean of 
the posterior distribution. E(AI x), is the best predictor of the accident rate in 
the next year (given that the true accident rate A remains constant). The size 
of the regression effect is equal to the difference between E(A Ix) and x (see 
Figure 1). Let a and 13 denote the length of the observation period and the 
number of fatalities, respectively. The regression line is a linear function of 
X, with slope I/(l + a) (Jarrett et al., 1982t ). The regression line intersects the 
45° line where X = pia. The regression effect is negative for values of X 
larger than pIa, indicating an expected reduction in the number of acc·~enl ls . 

The mean of the posterior distribution of A for some X, E(AI x). is the EB 
point estimate of the true accident frequency (Arbous et al., 1951; Robbins . 
1956). The EB estimate is corrected for the effect of 'regression to the 
mean' (Abbess et al., 1981; Jarrett et al., 1982, 1988 a.o.), by conditioning 
on x. This is illustrated in Figure 1. The random variable X (X-axis) denotes 
observed numbers of accidents. The Y-axis represents E(AI x): the expected 
accident frequency for a given value x. When Y = X = f3/a, the expected value 
of Y is on the regression line, 'the line of expectations' (Freedman, Pisani & 
Purves. 1978, p. 161; Jarrett et al..l982). The effectiveness of remedial 
measures is based on a comparison between accident frequencies before and 
after treatment. 

t Jarret le'la I( 1982) use So and "0 J'nstcad of a and p. 
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1.2. Effect of Remedial Treatment 

Bayesian analysis differs significantly from the classical analysis of accident 
data. The motivation for the 8ayesian approach is the desire to use prior 
knowledge about accidents in the analysis. This prior knowledge is often 
based on regional characteristics and accident history at that location, and is 
used to detennine the extent to which the site is hazardous .In a first step, 
accident histories are aggregated over sites (or years) to estimate the 
probability distribution of accident rates. In the second step this (empirical) 
prior distribution and the accident history at a particular site - which is 
assumed to be Poisson - are used to obtain an estimate of the (posterior) 
mixed probability distribution at the particular site. For this, nonparametric 
methods and 8ayesian methods are available (e.g., Hauer, 1980a,b, 1981, 
1982, 1986, 1992, 1995). Maher & Mountain (1988) discuss two methods 
r annual accident total' vs 'potential accident reduction ') for the 
identification of potential b1ackspots and the evaluation of the treatment, 
including the regression-to-mean effect. Outstanding results are those by 
Robbins, Hauer, Hauer & Persaud, and Abbess, Jarrett & Wright. 

1.3. Regression to the Mean 

One of the problems is the selection of entities for improvement. Notoriously 
dangerous entities are, on average, less dangerous after remedial treatment, 
but some entities would have 'improved' as well without remedial treatment. 
On the grounds of the principle of ' regression to the mean', we expect for 
these entities lower accident frequencies in the future. Because they have the 
higher accident rates, they are selected for improvement. This is the meaning 
of 'bias by selection', according to Hauer (1980a). For these sites, a decrease 
in the number of accidents is expected, irrespective of the succes of the 
remedial treatment. In the same way, we expect an increase in the number of 
accidents for systems that have less than average accidents: the so-called 
positive regression effect (larrett et ai, 1982; McGuigan, 1985b). The 
regression to the mean effect results from selecting objects for investigation. 
If, e.g., car drivers are selected on the basis of their previous accident records, 
then the average tends to decrease for the group with accidents and to 
increase for the group without accidents, for purely statistical reasons. When 
the duration of the observation period increases, the relative size of the 
regression effect diminishes. This applies to drivers as well: drivers with one 
or more violations in one period are seen to have, on average, 60-80 percen 1 
less violations in the next period (Hauer et al., 1983). The effect is much 
larger for drivers than for road segments (because of hospitalisation, license 
revocation, etc.). A problem is how to obtain unbiased estimates in before­
and-after studies in the presence of the regression effect (but see larrett. 
1994). All authors assume that the number of accidents on each system 
follows a Poisson or a compound Poisson distribution (Robbins, 1964, 1977 , 
198Oa,h,c; Hauer, 1980; Gipps, 1980, Abbess et al., 1981, a.o.). 

Most empirical Bayes estima brs are shrinkage estimators, and like the LE8 
('Unear Empirical Bayes') estimator, they ·shrink' the observed accident 
frequency towards the grand average, the expected value (Stein. 1955; Elron 
&: Morris, ]977; Jarrett et al., 1982, 1988; lanett, ]991, 1994). This results in 
a smalle r mea n s(JJared error of estimate. The size of the regression-la-the­
mean effect and its dependence on length of observation period is clearly 
descnbed by Abbess et al . • 1981, and by Wright et al., 1988. Identification of 
blackspots is described in a decision theoretic framework by Hauer &: 
Persaud ( 1984). Notoriously dangerous systems are, on average, less 
dangeroQi after remedial treatment, but some systems would have 
improVed' as well without remedial treatment (see section 4.4). In the words 
of Hauer &: Persaud (p. 165): 
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"Thus. prayers for accident reduction on road sections that in one year had 
three or more accidents ( ..• J might seem to bring about a 55 percent 
reduction in the number of accidents ... 

From the principle of 'regression to the mean', we expect for these systems 
lower accident frequencies in the future. But because they have the higher 
accident rates, they are selected for improvement. This is the meaning of 
'bias by selection', according to Hauer (198Oa). In short. we expect a 
decrease in the number of accidents irrespective of the succes of the remedial 
treatment for systems. In the same way. we expect an increase in the number 
of accidents for systems that have less than average accidents: the so-caJled 
positive regression effect (Jarrett et al, 1982; McGuigan. 1985b). 

1.4. Expected Number of Accidents 

If systems are grouped on the basis of their accident history. the average 
number of accidents i observed for a group of systems (crossings. round­
ahouts, drivers, etc.) in some period need not be equal to the number of 
accidents in the subsequent period (Hauer, 1986). There are large 
discrepancies between x (as an estimator of the average, A), and a, the number 
of accidents in the after period (as an estimate of the average of the A'S of, 
for example, roundahouts with equal .t). 

Were x a good estimator for A, then systems which recorded x accidents in 
one period would record. on average, x accidents in the next period of equal 
duration if their expected number cl accidents did not change. However, this 
is not generally observed. Therefore, the conclusion must be that x is not a 
good estimate of A (Hauer, 1982, 1986). Hauer (1986) even makes a 
stronger claim: x is not a good estimate of A irrespective of how systems are 
selected. (This may be because x is small and, hence, may be unreliable). 

Nevertheless, many studies still use the 'before-and-after' design or 'with­
without' studies. Even random selection for treatment cannot eliminate the 
bias (Jarrett, 1988, p. 94). This is because of the difficulty of obtaining two 
exactly similar sites. The treated and untreated sites should be chosen in 
exactly the same way, they should have similar accident frequencies in the 
before period. Also, the site to be treated should then be chosen at random. 
by the toss of a coin. A significant result is unlikely to be obtained because 
of the small frequencies at both the treated and control sites. The conclusion 
is that one just should be aware of the regression-ta-mean effect. This 
phenomenon was already known from genetic research as the tendency to 
'return to the mean': sons of very tall fathers are. on average, shorter than 
their fathers, and vice versa (Sir Francis Galton, 1877). A clear and extensive 
account of this phenomenon is Hauer & Persaud (J983). 

1.5. Migration of Accidents 

When an accident blackspot is treated, the reduction in accidents is often 
accompanied by an increase in numbers of accidents towards neighbouring 
sites. One explanation of this is a reduced awareness of the need for caution 
(Boyle et al., 1984), and risk compensation. The hypothesis of risk 
compensation has been criticised fiercefully. Statistical explanations are the 
(reversed) regression-to-mean effect (McGuigan, 1985a), the possibility that 
conversions bring about a degradation in safety (instead of improvement), o r 
positive correlation between true accident rates of adjacent sites, since traffic 
flow tends to be correlated at adjacent sites (Maher, 1987). Maher (1990, 
1991) devised a bivariate negative binomial model to explain traffic accident 
migration, following Senn & Collie (1988), Bates and Neyman (1952). 
Persaud (1987) gives plausable explanations for migration of accident risk 
after remedial blackspot treatment . 
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1.6. 01'l8"tion of the Subjects 

First of all, an overview of historical issues is presented (see Arbous and 
Kerrich, 1951), who popularised some some standard distributions (and 
mixtures of distributions) for accident analysis. We discuss the concepts of 
accident proneness and accident liability, and the difference between the two. 
Some people believe in the existence of some sort of 'calamity Joe'. but 
others argue that accidents occur at random to any experienced driver 
(section 2). Because accidents are aggregated for each individual road 
section, for example. and, in a second step, over all (comparable) road 
sections, estimation proceeds at two levels. With this kind of data, shrinkage 
estimators are more efficient; this follows from Stein's paradox (section 3). 
Some useful distributions for the analysis of accidents are given in section 4. 
Classical versus empirical Bayes techniques are the subject of section 5, and 
the pioneering work by Robbins with respect EB estimating techniques in 
section 6, and 7. Section 6 concerns estimation a compound Poisson 
distribution', in three distinct cases (G is unknown; G is restricted to be 
Gamma; and G is completely specified, resp.). Section 7 concerns prediction 
and estimation for mixtures of exponential distributions. The description of 
the Poisson-Gamma model and the estimation of the regression effect by 
Abbess, Jarrett & Wright (1981) triggered a lot of research. see section 8. The 
linear empirical Bayes estimator is presented in section 9. Estimating 'safety' 
is the subject of section 10, the correction for'bias by selection' and the 
selection of truly dangerous site is the subject of section 11. The 
phenomenon of migration of accidents is discussed in section 12. Section 13 
presents some special formulas for empirical Bayes estimation. References 
are given in section 14. 
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2. Accident Proneness, Compound Poisson & Mixtures 

In the first half of the 20th century, a Jot of research was being done in the 
field of human factors research. This research was concerned primarily with 
industrial accidents. but also with road accidents. Different hypotheses may 
give rise to the compound Poisson distribution, e.g., the biassed distribution 
with special examples the contagious hypothesis and the burnt fingers 
hypothesis and the unequal initial liabilities hypothesis. An important review 
is by Arbous & Kenich (Biometrics, 1951. ca. 90 pages). Mter this, Robbins 
(1956, 1964, 1977, 198Oa,b,c) contributed influential papers about accident 
statistics. Hauer (l980a,b, 1986, 1992, 1995), contributed new directions, 
methodologies and applications in road safety research. Abbess. Jarrett & 
Wright (1981) suggested to use the negative binomial distribution to predict 
the future number of accidents for any blackspot from past and present 
accident frequencies. This paper was very influential and triggered a train of 
research, as did Jarrett, Abbess & Wright (1982), and Hauer (l98Oa,b). Hauer 
& Persaud (1983, 1984, 1987) and Persaud & Hauer (1983) are early 
contri butions that should not be missed in the study of the methodology of 
road safety research. 

2 ·1. History of Accident Statistics 

In the study of accident proneness one has come to realise that "efficient 
and not cheap labour is the most economical" and that "full and promotive 
health is considered far more important than the mere absence of disease ( ... ) 
in order to ensure maximum operating efficiency" (Arbous & Kerrich, 
1951). This study is primarily concerned with industrial accidents but applies 
to road accidents as well. 
As the authors note, in the period 1940-1945, South Mrica suffered 23,300 
war casualties and 54,987 casualties on the roads of the Union. It is realised 
that personal factors play a great part in accidents. Besides environmental 
circumstances, psycho-physiological circumstances (health, alcohol, fatigue, 
age and experience) affect the liability to accidents. The state of fatigue may 
be influenced by environmental circumstances (lack of rest pauses, food, 
illumination, etc.) and is considered to have great impact on both output of 
work and accident rate. Mental attitudes may well destroy the direct 
relationship between environmental factors and accidents. In the Hawthorne 
Plant of the Western Electric Company (Roethlisberger et al., 1949), a study 
was set up to examine the influence of various environmental factors (rest 
pauses, illumination, etc.). Production increased in both the test group and in 
the control group. In another experiment in the same plant, illumination was 
70% decreased for the experimental group. As in the previous experiment, 
production increased in both the experimental and control group. The 
experimenters realised that motivation must be a factor. It was hypothesised 
that the new interest taken in the workers - they were kept fully informed and 
taken into the confidence of the investigators - caused this effect. 

2.2. Accident Proneness 

In most of the industrial work-groups studied, a minority were responsible 
for the majority of the accidents (Arbous & Kenich, 1951). This does not 
imply that we clearly can discriminate between people who are accident­
prone and who are not, as Kerrich (in Arbous & Kerrich, 1951) illustrates in 
Adelstein's (1951) data. In this study, the accident data of 104 shunters who 
joined in 1944 and shunted for three years. The average accident rate for 
104 men in the 1st, 2nd. and 3rd years was: .557, .355, .317, resp. Mter 
removing the 10 men with the highest accident rate in the first year, the 
average accident rate for the remaining 94 men was: 393, 361, 329, resp .; 

11 



the accident rate increases somewhat after the removal of the men with 
highest accident rate. (If it is true that, on average, these men all had an equal 
accident rate, then the men with an early high accident rate are expected to 
have a relatively lower accident rate afte r the first year . and the shunters with 
b w accident rate a higher accident rate.) Accident proneness is distinguished 
from accident liability (Farmer et al.,l939): "Accident liability includes all 
factors detennining accident rate, accident proneness refers on Iy to those that 
are personal". According to Vemon (1936), even accident-proneness is not 
a fixed quality of the individual, but is influenced by external changes of the 
environment as well as by internal changes of physical and mental health (see 
Arbous et al., 1951, p. 352). The statistical study of accident proneness 
started as early as 1919. The first study is by Greenwood and Woods (1919) 
who investigated the frequency with which accidents occurred in groups of 
'munition' women engaged in various machine operations required in the 
manufacture of shells in a munition plant. Some of the women suffered no 
accidents at all, others suffered once or twice, and a few of them more 
frequently. This might be due to simple chance. or the workers may have 
started all equally, but an individual who suffered one accident by pure 
chance might, in consequence, have her probability of suffering further 
accidents increased or decreased. This might have made her more careful 
afterwards, which reduced her liability. Or it might have increased her 
nervousness, and thereby predisposed her to more accidents. Accidents 
distributed on this basis are called biassed (see Arbous et aI., 1951, p. 353). 
Or, we may suppose that all workers did not start equal, but some are more 
liable to suffer casualties than others, fom the beginning. Accidents would 
then be distributed on the basis of unequal liabilities. The 'unequal initial 
liability' hypothesis has the closest fit to the data. Thus, three hypotheses are 
forwarded (Arbous et al.. 1951): 

1. Hypothesis of Chance Distribution 
Accidents occur to individuals by pure chance. This means that individuals 
are equally liable to sustain accidents in the environment, and environmental 
circumstances are homogeneous for all individuals with regard to physical 
and psychological qualities that may influence liability. Then the distribution 
of accidents is Poisson. However. when the distribution of the group is 
Poisson. it need not be true that the population is homogeneous. For 
example, accidents in two distinct periods may be Po'lSson dtlStributed in each 
period, but when accidents from the two pe riods are combined. the 
distribution may be a compound Poisson distribu'ton . 

2. Hypothesis of Biassed Distribution: Burnt Fingers 
Different hypotheses may also give rise to the compound Poisson 
distribution, e.g., the biassed distribution (Arbous et al ., 1951, p. 358): the 
probability that an individual has an accident within a short interval of time 
depends on the number of accidents that he has had previOUsly. One special 
example of the biassed hypothesis is the 'contagious hypothesis': the more 
accidents a person had, the more likely he is to have accidents (at time zero, 
none of the individuals have had an accident). Practical identical Jesuits 
follow from the so-called • burnt finge rs hypothesis ' ('the child who has 
burnt his fingers, fears the fire'. p. 405), resulfrtg in a decrease of accidents . 

The hypothesis of increasing numbers of accidents due to increased liability 
after an accident cannot be the right one, because if it were true. accident 
rates of individuals should increase with time (the more accidents a person 
had, the more likely he is to have accidents, which is in contradiction with 
actual experience . But see Kerrich's treatment of the 'contagious 
hypothesis' in Part 11 of Arbous et al. (1951). and below. 
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3. Hypothesis of Unequal Initial Liability - Accident Prone Percy 
It is customary to choose the negative binomial distribution when the Poisson 
distribution is not appropriate. One of the hypotheses that lead to this type of 
distribution is that of unequal initial liability or proneness. Assume that n 
persons are working in a homogeneous environment, and that these persons 
are non-homogeneous with respect to their individual proneness to sustain 
accidents, i.e., they differ among themselves in this respect. Suppose that he 
total group can be divided into subgroups 1,2,3, ... , k, each of which is 
homogeneous within itself but differing from all the others. Although the 
liability in each subgroup is constant, individuals will not all have exactly the 
same number of accidents in any given period of time. By assuming 
homogeneity in each subgroup, the distribution of accidents will follow a 
Poisson distribution. Then it is possible to calculate the average number of 
accidents per individual (~) in each subgroup. which represents the Iiabi hy 
of individuals in each subgroup to sustain accidents. Thus, 

Accidents of subgroup 1 yield a Poisson distribution with average At. 
Accidents of subgroup 2 yield a Poisson distribution with average ~. .. .. . ... . . . . .. . .. . 
Accidents of subgroup k yield a Poisson distribution with average Ak' 

The number of individuals per subgroup is assumed to vary. The form of the 
resulting distribution is a Gamma or a chi-squared distribution and the 
number of accidents by the total group, irrespective of subgroups. follows a 
negative binomial distribution (Arbous et al., p. 360). which comes down to a 
superimposition of a series of Poisson distributions, referring to the 
subgroups I, 2, 3, ...• k. mentioned above. This is true as well for 
environments and personal liabilities or A's changing in time. provided the 
changes are the same for all individuals (Arbous et al.. 1951, p. 362-363). 

2.3. Compound Poisson: Mixture of Distributions 

2.3 .1 . 

Let a =}.Jf be the average accident liability. the average number of 
accidents per individual per unit time. If a population is not homogeneous. '. 
may consist of a mixture of two or more homogeneous populations: a 
compound Poisson distribution. The distribution of the mixture is 

and analogously for mixtures of n > 2 populations. Still more generally, 
suppose that the A's have a continuous distribution, so that the individuals 
with the same A have a distribution withftxlA) = e-). AX/X!, while the 
distribution in the population is 

(1) 

ftx) =1: ftxIA)G(J..)dA., a mixture. denoted ftx) =J:ftxlJ..) g(J..), (2) 

in which the conditional POlsson probability j(xIA) is weighted by the 
unconditional probability g(A); G(A) is based on empirical frequencies. 

Different hypotheses give rise to the compound Poisson distribution, e.g., the 
unequal initial liabilities hypothesis. the biassed hypothesis with special 
examples the contagious hypothesis and the burnt fingers hypothesis. 

T MtJ Sub-Perzods: Bivariate Compound Poisson Distribution 

As for the 122 shunters, they had up to 25 years experience before coming 
under observation. They were observed for 11 years. This period was divided 
into two periods: from 0 to 6 years and from 6 to 11 years, respectively. 
Within each subinterval, a Poisson distribution can be fitted to the 
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observations, but not to the combined observations (p = .15, .30, and <.(0) . 

respectively). The authors conclude that the population is non~homogeneous 
and they fitted a bivariate negative binomial distribution based on the 
compound Poisson hypolhesis to the data, the fit seems quite satisfactory. 
The same has been done for the contagious hypothesis. For this data. the 
• compound' hypothesis is more plausible than the 'contagious' hypothesis . 
The correlation coefficient between the periods is '01 = .258. which is 
significantly different from zero. 

The fundamental question is to predict which people will have the most 
accidents in the future. This question may be researched in three stages, 
using the bivariate compound Poisson or the bivariate contagious 
distributions, respectively (Arbous et al., p. 413 ~ 425): 

(1) examination of what happened in the first period, 
(2) prediction of what will happen in the second period, and 
(3) evaluation of what happened in the second period. 

Take two subintervals,~ (the interval from 0 to t) and6J (interval from t to 1). 
Then, Xo = number of accidents an individual has during the interval 60 

XI = number of accidents an individual has during the interval 61 
x = number of accidents an individual has during 6 :: 60 + 61, 

It is assumed that for each individual, 

()..{) )x, 
f( 1'1) - -Ao, J 

Xl ,.. - e X , 
l' 

Thus, the underlying assumptions are not the same as before, where A was a 
fixed annual accident rate unaffected by time. For the A's, a Gamma 
distribution is taken in the fonn 

and y is a fixed annual average number of accidents per person. Number of 
years (periods) of observation is represented by the parameter a, intensity of 
accidents by 11 A bivariate compound Poisson distribution is derived. where 
y6 replaces A; see Arbous et al.: 

2.3.2. Estimating the (Biva,iate) Negative Binomial Distribution 

The negative binomial distribution and the bivariate negative binom 'Jal 
distribution together with the estimation of parameters and an acco tnt of 
previous research is clearly described in Arbous & Kerrich (1951) . To 
estimate the parameters of the negative binomial distribution from a set of 
data. a computer program was written by Wyshak (1974). Jarrett, Abbess & 
Wright (1982; 1988) and Jarrett (1991) are clear expositions of (estimation 
of parameters in) the bivariate negative binomiaJ model. Maher (1987) 
describes the truncated negative anomiaJ distribution to model accident 
frequency data in order to arrive at a probabiJistic interpretation of accident 
migration. Senn & Collie (1988) use the bivariate negative binomiaJ model 
to separate the regression to the mean effect from the t reatment effect . Mahe'r 
(1990) fits a bivariate negative binomial model to explain traffic accident 
migration. Maher (1991) fits a modified bi variate negative binomial mode l 
for accident frequencies. in which the two true average accident rates may be 
correlated . 
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3. Shrinkage Estimators: Stein's Paradox 

The best prediction about the future usually is obtained from the average, X. 
of past results. However, Stein's paradox defines circumstances in which there 
are estimates better than simply extrapolating from the individual averages. 
namely, 

: = i + c ( x - i ), 

in which x is an individual average, and i the grand average for all entities 
(individuals). The original example is in tenns of batting averages (x) of 18 
baseball players, rescaled into numbers between 0 and I (Efron & Morris, 
1977). The constant c is a shrinking factor, c < 1. The paradoxical element in 
Stein's result is that it may contradict statistical theory. It has been proved that 
no estimation rule is better than the observed average. However, with three or 
more baseball players and the goal of predicting future batting averages for 
each of them, there is a better procedure than extrapolating from the 
individual averages (Efron & Morris, 1977). Stein's paradox states that the ,:­
value, the lames-Stein estimator of a player's batting ability, is a better 
estimate of the true batting ability than the individual batting averages x -
thereby making the average an inadmissible estimator. For 16 out of the 18 
players. the batting abilities are estimated more accurately than by calculating 
the individual averages. For these players, the individual average is inferior to 
the James-Stein estimator as a predictor of their batting ability. The James­
Stein estimators, as a group, have smaller total squared error. 

Let a player's true batting ability be denoted by 8; an unobservable quantity, 
of which the performance of the batters is a good approximation. Now, it 
should hold that for most of the players, 18 - .t I> 18 - z I. The total squared 
error of estimation is smaller for the lames-Stein estimator (.022 for the 
James-Stein estimator and .077 for the observed averages). The explanation 
lies in the distribution of the random variable. Stein's (1955) theorem is 
concerned with the estimation of several unknown averages (the individual 
batting abilities) by a risk function (the sum of the expected values of the 
squared errors of estimation for all the individual averages). No relation 
between the averages need be assumed, and the averages are assumed to be 
independent. When the number of averages exceeds two, estimating each of 
them by its own average 's an inadmissible procedure: there are rules with 
smaller total risk (Efron & Morris, 1977; James & Stein, 1961). The 
shrinkage factor is: 

c = 1 _ ( k - 3 ) 0
2 

where 
k( x - i)2 ' 

- k is the number of unknown averages, 
- a2 is the overall variance of x , and 
- I( x - i )2 is the sum of the i n:iividual variances (squared differences 

between individual averages w (t. the grand average) 

The shrinking factor c becomes smaller as I(x - i)2 becomes smaller. The 
procedure works best if the individua I averages x are near the grand 
average i. Shrinkage ('Linear Empin'cal Bayes', 'LEB') estimators are 
described in Robbins (1977, 198Oa.c), larrett et al., (1988), Jarrett (1991, 
1994), Persaud (1986. 1987). 
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4. Accident Distributions 

The Poisson distribution has become a standard for the analysis of accident 
frequencies at a fixed location during a certain period of time (see e.g .. 
Arbous & Kerrich, 1951; Robbins, 1956, 1964, 1977, 1980a,b,c; lohnson & 
Kotz, 1969; Gipps, 1980; Hauer, 198Oa,b, 1981,1982; Hauer & Persaud, 
1983; 1984; 1987; Abbess, Jarrett & Wright, 1981; larrett, Abbess & Wright, 
1982; 1988). Counts of (fatal) accidents are compared over periods and 
accident counts are aggregated over comparable locations using an empirical 
Bayes approach (see, e.g., Hauer, 198Oa,b, 1981, 1986, 1992, 1995: Abbess, 
larrett & Wright, 1981; Hauer & Persaud, 1983; Persaud & Hauer, 1983). 
Counts of numbers of (fatal) accidents at a fixed location or at carefully 
matched locations are repeated over time, so there is variation in time and 
location, As for the locations, there are as much averages (and/or 
expectations) of numbers of accidents as there are locations. The 
averages/expectations themselves have a distribution with the grand average 
as a measure for central tendency and a dispersion factor. The distribution of 
the averages is supposed to be Gamma. If the distribution of accidents per 
location is Poisson, and if the distribution of the averages of the locations is 
Gamma, then the distribution of the accidents over locations is the negative 
bionomial distribution. 

4.1. Distributions: Poisson, Gamma, and Negative Binomial 

There is always variation between locations (and between, for example, 
annual measurements at a fixed location) as a result of changes in traffic flow 
and other causes such as an adaptation of the traffic situation. As a result of 
this variation, frequencies of accidents at more locations and/or over more 
years will, in general, be not exactly Poisson distributed, but show 'over­
dispersion': the ratio (variance/average), the coefficient of variation, will not 
be exactly one, but larger than one. 

To face this problem, the negative-binomial distribution is used to describe 
the distribution of accident frequencies (see e.g., Abbess, Jarrett, and Wright, 
1981; Jarrett, Abbett, and Wright, 1982). The compound Poisson distribution 
is referred to as a 'Poisson distribution with overdispersion'. The negative 
binomial distribution arises from the combination of a Poisson distribution 
for X. the number of accidents at a certain location given E()'), the expected 
value of X, and a Gamma distribution to describe the variation of ;., over 
locations (see larrett et al .• 1982, Abbess et al., 1981; Robbins. 1950, 1951, 
1956, 1964, 1977, 198Oa,b,c; Hauer, 1981; Arhous and Kerrich, 1951; Bates 
& Neyman, 1952; among others). 

Tables and properties of the negative binomial probability distribution are 
given by Williamson et al. (1963). A program for estimating the parameters 
of the truncated negative binomial distribution is Wyshak (1974). 

J6 



5. Classical vs Empirical Bayes: Robbins (1956) 

Both In pure Bayes and in empirical Bayes estimation. the parameter value ). 
itself is regarded as a realisation of the random variable A. with d'lStribution 
function G(A), the prior distribution. In the pure Bayes approach, GO.) is not 
necessarily interpreted in terms of relative frequencies (it may reflect 
intuition or prejudice). In the EB approach, G(A) is given a frequency 
interpretation and the availability of previous data, suitable for estimation of 
G()'). is assumed. It was Robbins (1956) who coined the tenn 'empirical 
Bayes approach' (Maritz. 1970, p. 2). The EB estimation rule generally 
depends only on past and current accident frequencies. 

Suppose there is an hazardous location, somewhere. and there is pressure 
from local authorities to make considerable a$ptations. Of course, this is 
very costly and one has to make sure that major changes are called for. The 
problem is to estimate the true intensity, )., of fatal accidents at that site, from 
the observed value, xn' last year's intensity. Since accidents occur every year. 
there is a sequence of past observations (XI' ...• xn.t). the annual numbers of 
fatalities before last year. We suppose that there is a known probability 
density function j(xlA) = Pr(X =-x lA =).) for the frequency of fatal accidents 
and a fixed distribution function for the true value A: G (A) = Pr (A ~ ).). 

To estimate An from an observed Xn when the previous values At - An_) are 
known, the empirical distribution function of the random variable A, Gn_I(A) 
is used, which is based on the past (n-l) observations. To ascertain the true 
risk of some site in comparison to other places or with respect to the past. the 
following sequence is generated (Robbins, 19056): 

The An are independent random variables with common distribution 
function G. The distribution d Xn depends only on An' For 
An =)., Pr (Xn I An) isj(x I A). Let Xl' ... , Xn-t represent the 'past' observed 
values of A, and let Xn be the 'present' value. Our task is to predict the 
unknown An from the observed value Xn. If the previous values AI' .... An.1 

are known, the empirical distribution of the random variable A can be 
formed. An can be estimated and the risk of the site can be evaluated. 
The present observation x is gauged with respect to the past infonnation: 

G A _ (number of terms A,., .. , An _, which are s ).) 
n. l( ) - n - 1 (3) 

tae frequency or the number of years for which the number of fatali ties was 
smaller than or equal to ).. For any fixed x the empirical frequency 

" _ number of tenns XI .. ,Xn. which equal x 
In (x) - n . 

Last year's estimate is the mean of the posterior distributio n of A given Xn=x: 

f: ).i( x lA) dGn_1( ).) 

tPa ( Xn) = f 00 • 
of( x I),) dGn_1( ). ) 

(4) 

from (3) by replacing the unknown pn'or distribution Gn( )') by the 
·empirical' distribution Gn_1(A), and plugging in x, last year's estimate of A.. 
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5.1. A Stochastic 

The variable X: 'number of deaths' takes discrete values x:: 0.1. 2, .. and has 
a probability distribution depending 'm a known way on the unknown A: 

ftx I A ) :: Pr(X :: X I A = A) ; (5) 

A itself is a random variable with a prior cumulative distribution function 

G (A ) = Pr(A SA). (6) 

The unconditional probability density function (p.d.f.) of X is 

00 

fG(x)=Pr(X=x) = f f(xl)")dG(A) (7) 
o 

(see Robbins, 1956, p . 157). The dependence of the marginal distribution 
of x.fG(x), on G(A) is indicated by the index G. 

5.2. Mixtures: Mixed Poisson Distribution 

For a given A, the probability of x deaths in accidents at a roundabout in 
one year is 

}..X e';( 
fix I A) = xr' (8) 

(see 5) and in repetitions of the same process with different (but completely 
matched) roundabouts, the marginal distribution of fatalities at these 
roundabouts is the posterior or mixed Poisson distribution 

00 00 }.! e-X 

!d x)= ! f(x I A) dG(A) = ! xr dG(A), 

see (7). Here,!dx) andftx I A) are given distribution functions.!dx) is 
called a 'mixture' of !(x I A) type distributions functions, with G(A) the 
mixing distribution;!(x I A) is called the kernel (Maritz & Lwin, 1989). 

(9) 

Suppose we want to estimate the unknown intensity of some roundabo It. 
An' from the observed xn ' If the previous values AI' ... , A n-1 are known, then 
the Bayes estimator of A corresponding to the prior distribution G of A in 
the sense of minimizing expected squared deviation is the random variable 
tP (xn) (cf. Robbins. 1956): 

I: Af(xIA) dGn_I(A) 
tPG(Xn):: fCD = 

o ftxll..) dGn -l(A ) 

fGCt + I) = (x + I) fG(.t) • ( 10) 

from (4) . The combination of hisDrical data and present information yields 
a posterior average which includes the information of both sources and, 
hence, is more reliable. 
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6. Estimation for Mixtures of the Poisson Distribution 

Robbins (1977, 1980a.b.c) preserts three distinct proced'ltes to estimate 
E()' I x = a): the expected numbers of accidents on the bas'lS of observed 
numbers of accidents, and provides prediction intervals for future numbers 
of accidents. The 1977 and 1980b papers are SiPCcjal because they concern 
the prediction of future accident numbers smaller than of larger than some 
critical value. These will be discussed in a separate section. The 1980a.c 
papers present three different cases for the distnbution of the expected 
accident rates are considered: the distribution of the mean accident rates, 
G(}..), may be Gamma. restricted to be Gamma, or completely unknown. If 
the prior distribution is Gamma, the estimator is a Linear Empirical Bayes 
estimator ('LEB'). However. if G is not Gamma. the T-estimator may not be 

consistent. A more general EB estimator. 'T', is always consistent, but may 
be inefficient if G is Gamma. Robbins (198Oc) proposes to combine both 
methods of estimation. 

Let X be a random variable such that. given A, a is Poisson distributed.ftal).). 
with average A. and ). has a prior distribution G. Our task is to estimate ). 
from the data. The three cases depend on whether the prior distribution G is 
- completely unknown (Case a); 
- restricted to be Gamma with unknown parameters (Case b); 
- known to be Gamma with known parameters (Case c); 
Case a, b, and c are discussed in sections 6.1, 6.2. 6.3. respectively. 

6. J . Empirical Distribution Function G Unknown 

In Robbins (1980a), the problem is to estimate the expected accident rate 
Ea(A I X = x). given the observed rate x. There are no assumptions 
concerning the distibution function G of ).. Let a be a fixed integer. The 
sample size is n. Assume that (~. Xi' Yj ). i = 1. 2, .... n. form a random 
sample from the distribution of ()., X, 1'). The parameter values J..,i the past 
values X,'. and the future observations Yi are random variables; only the past 
values Xi are observable. the parameter v~es ~ and the 'future' values ~' 
are not. Given A. X and Yare independent Poisson dislll'lbuted w~ average A. 
The problem is to estimate 

I. Ea = E( A I X = a). the grand average. an unknown constan ~ 

2. S = (i 'X = a). the average of the A'S for all Xi that equal a; 

3. U = ( Y I X = a). the average Y-value for all Xi that equal a. 

First estimate: Ea = Ea (A I X = a) 
Robbins (l980a,c) shows that with 

I (x I }..) = Pr(X =x I }..) = e-}..Ax Ix!, see (8), and 
00 

la(x) = Pr(X=x) = J I(x I A) dG(A), so that 
o 

foo I(x + 1) 
E()JX=x)= 0 )./(x I ).) dG().Ht(x)= (x+ 1) / (x) , ( 11 ) 
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from (4) and (10). Hence, E(J..I X = a) :: (a + 1)1)(:/) 

For n _00, Ea is consistently estimated by (a+ 1) ~, 
a 

(12) 

where 'N' denotes 'frequency'. Robbins (l98Oc) shows that ']t (;a h) is the 
minimum mean squared error estimator of }.. for x = a: 

T= T(a.G) = E(}..lx=a) == }.. (al~dG(}") = (a+l) NiV:' . (13) 

For large n. an approximately 95% confidence interval for T is given by 

( 1) n (a + 1) 1.96(a + 1) ,,(a + f) (1 n(a + 0) 
a + . n(a) ± "n(a) n(a ) + n(a) . 

Second and Third Estimates: S :: (X I X = a), and U:: ( Y I X==a) 
To express S, U and T in symbols, Robbins (l980a, b) defines 

{
I if Xi:: a 

Vi == 0 if Xi;c a {
Xi if Xi = a + 1 

,and Wj = 0 if Xi;c a + 1 ,and 

Na = the number of values of XI' ... , Xn that equal a (a == 0,1, ... ). Hence, 

_ ~A; Vi ~A; Vj _ ~Yi Vi ~Yi Vj 

S=(}..!X=a)= = N ,U==(Y!X=a)= - N ' 
$Vj a ~Vi a 

~w. 
and T == --' == (a + 1) ~,and is used to estimate Ea' S, and U, ( 14) 

~Vj a 

r D .., 
see (13). Robbins shows that, as n _00: • ",n(T - Ea) - N(O, at), 

r D .., 
• ",n(T - S ) - N(O, o:t), 

r D .., 
• ",n(T - U) - N(O, 03-)' 

and V l
2 < a:! 2 < 0 3

2 • An approximately 95% confidence interval for Ea is 

T ± 1.96 V(a+ l).!(N~+ I ) (Na + Na+l)/N~, and analogously for Sand U . 

6 .2. Restricted Empirical Bayes Method 

In the previous paragraph, the statistic T was used to estimate Ea ' In this 
paragraph, the' restricted' Empir ical Bayes approach (Robbins, 1980a) is 
presented, in which the distribution function G of }.. is assumed to be Gamma. 
In this restricted approach , a and p are unknown parameters to be estima' t:d 

from X1' ... ,xn; the expected value is Ea = ~ : ~ (see next section). 

The test statistic is f :: a + ~ in which a. and fJ are estimates of a and p. 
1 + a 

based on X I' .... Xn. Using the method of moments: 

t Robbins' h is equivalent to Robbl'ns' T (198<»). We stick to the notation 'r . 
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-
- x a=­

-? - , 
s- -x 

- 1 ~ 
where x = n f xi and 

- ;2 
{3 =-, 

S2 -; 

_? l~ - ., 
s- = n~ (xi -x )-, so that 

(15) 

( 16) 

( 17) 

the Linear Empirical Bayes ('LEB') Estimator, see Jarrett, 1991. If G is 

Gamma distributed, then T will be more efficient than T, since "f';,( f -Ea) is 
asymptotically normal with mean 0 and a smaller variance than T (Robbins, 

1980a). However, if G is not Gamma, then T need not converge to Ea at all, 
in contrast to T, which always does. 

6.3. Empirical Distribution G Completely Specified 

1. The distribution function of the true underlying fatality rate A is: 

aP 
Gamma: g().) = dG().) = n7If)fl-l e-aA a, {3 >0 

where • r(p> = (f3-1)! = (f3-I)(f3-2)(f3-3) ... (l), 

and 
r r(r+ {3) Ii. 8 

• E()'; ) = f<!3)a r (r ~ 0), so that E()") = a' Var()..) = ~ (18) 

and • 4'a( ) = ~: e ' the posterior mean (19) 

and • E[ 4'a(X) - ;"12 = a( 11 a) , the expected squared deviation 

2. The distribution of observed fatalities x given the true underlying rate A. is: 

Poisson: ftx\A.) = e-}.).x Ix!, x = 0, 1,2, ... 

with • E(x I),,) = Var(x I),) = A 

3. The mixed or posterior distribution, po(a), a 'compound Poisson', is the 

r ({3 + a) ( a )13 ( 1 )0 
Negative binomial: f(a) = r ({3 la! 1 + a I + a ' 

with 

a = O. 1, 2,. ·.; (Robbins, 1980c, p. 6988), 

• E(a) = E()") , Var(a) = E(I..) + Var().), (20) 

IL pO + a) 
therefore , • E(a) = a • Var(a) = a 2 , from (18) and (20). (21) 

helU. 
E(a) E2(a) 

a = Var({lj _ E{a)' f3 = Var(a) _ Eta)' from (20) and (21). (22) 
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6.4. Estimation for Compoond Poisson: Various Statistics 

Robbins (198Oc) presents an estimator h for E(}.. IX = a) for the case where 
the empirical distribution function G is unknown. The h statistic is the same 
as Robbins' (l980a) T-estimator. Robbins (1908c) also presents a restricted 
empirical Bayes estimator Tn. for the case where G is restricted to be Gamma. 

and is the same as Robbins' (198Oa) T -estimator. These statistics from 
Robbins (198&) are discussed in a wider framework (see Table J). Robbins 
(198Oc) presents three new estimators. k. Wn, and Zn' Ea denotes E<A./X=a), T 

and h are the consistent moment estimators of Ea; T and Tn denote the 
restricted Bayes estimate when G is restricted to be Gamma; k is, like h. a 
moment estimator of EO. Ix = a), but may be associated with a different 

prior distribution function, say G'. If, in fact. G is Gamma, then T= Tn = T = 
h, and T (or Tn) is more efficient in estimating E(}" IX=a). But if G is not 

Gamma, T (or Tn ) need not converge to E(}..I X=a). Suppose that k is based 
on a prior other than G, and has the same fonn as 

( 
E(x) \ 

h = E(x) + 1 - varrxr' (a - E(x) 

then h can be estimated by replacing E(x) and Var(x) by the consistent 
m9ment estimators from (13): 

Wn = ~in + (1-~ )(a - xn) (Robbins, 198tX). sn 
Using Zn' these problems are overcome, because Z,,- Wn when h (or 1) = k; 
Zn - Tn when h (or 1) ;t k. 

Table 1. 
Overview of statistics for estimating E().I X = a) by Robbins (l98Oa, 198Oc). 

1980a: Ea 
1980c: Ea 

T 
h 

Description of statistics 

k Z" 

1. Ea = E(A/X=a), expected value for). given the observation X=a; 

2. T - h = (a + 1) N j/ I ,consistent moment estimator of Ea; 
a 

P -, i2+(s2-x)a E(W) 
3. Tn - h; Tn = T = LEB'= S2 ; T=h = 'E'{V)' see (13) - (17); 

- i 2 + (s2 - .i ) a . . . . . 
4. T= S2 ' the ' reStricted' or finear Empmcal Bayes estImator; 

5. k - h ( - 1): the prior G of k may be different from that o f h', 

6 · W n is the LEB estimator based on the mome It eSl6matt:>rs (see ( 15) - (17)); 

7. Zn is a combination of Tn and Wn: Zn-Wn when h = k; z,.- Tn when h ;t k, 
a 'super estimator': it combines the best of both estimators, Tn and Wn 
(Robbins, J 98tX) . 
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7. Prediction for Mixtures of the Exponential Distribution 
(Including the Compound Poisson) 

An estimate of E()'I x > a). for some accident count a, will often be more 
infonnative than separate estimates of AI' •.. , An. In Robbins (1977, 198Ob), a 
special empirical Bayes approach is proposed for predicting the future 
number of accidents for people who endured less than x (or: more than x) 
accidents. Suppose that last year a randomly selected group of n people had 
XI' •••• xn accidents. We are interested in the number of accidents YI' •••• Yn in 
the next year for these same n people. Let i be a positive integer, then the 
problem is to predict. from the values x" ••• , xn alone, the value of 

Si, n = {sum of the YjS for which the corresponding XjS are < i }, 

the total number of accidents that will be experienced next year by those 
people who experienced less than i accidents last year. Suppose that we are 
interested in next year's accident rate for people who had zero accidents. If 
we take 

{the sum of the XjS that are < i }, 

as an estimator, this would underestimate Si n by a considerable amount 
(Robbins, 1977). A good predictor of Si, n is 

Ei, n = {sum of the XjS that are :s; i } = {sum of the x}s that are • i }, 

because St,n is always zero (i.e .• a sum of zeros). Therefore. a good predictor 
of Sl,n is El, n = {number of people who had exactly 1 accident last year}. 
To prove this, Robbins used the compound Poisson distribution. The 
conditional probability distribution of x and Y, given}., is Poisson (see (8»: 

The average and variance of the conditional distribution are derived: 
E(xIA)=A. E(x2 IA)=A +A 2 , Var(xIA)=A. (23) 

The unconditional probability function of x and Y is the compound Poisson: 
~ ~ 

I(x) :: J( e -A AX I x! ) dG(A) resp. l(y) = f( e -A ').} I y! ) dG(A), 
o 0 

(see (9», and for the unconditional distribution, the average and variance are 
Ex = EA, E (x 2) :: EA + E(A 2), Var (x):: EA + Var (A), (24) 

and the same for y. Besides Si,n and Ei,n' we need the statistics N;,n and A,' : 

Si,n :: sum of the YjS for which the corresponding XjS are < i 
Ei,n = sum of the x s that are ~ i 
N;,n =: number .of the x,s that are < i 
Ai,n IS a functIon of die S,;n and E,~n . 

Robbins' main theorem srates that, for any fixed i = 1.2 ..... as n - 00. 

(E, -S, ).f;' D 
('\. . 'fJ) - N(O,l). The 95% confidence interval for S,' nlN; n is 

.n I.n • , 

E,'on _ I.96A; n < Si.n < E
'
.n + 1.96 A;.n -,v;:;; ;In NZ; N;; ;In 

For large n, the endpoints of the confidence interval do not depend on the 
mixing distribution G. For finite n the exact probability does depend on G. 
E,;n can be used to estimate G,' = E(Alx < ,) = E (ylx < i). since E(yIA) :: A. 
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Thus, 

E( 'll )_(x+ l)/(x+ 1) d E(11 )_(a+ l)N(a+ l) f 
- ,.. x - J( x) , an ,.. a - N (a) ,rom (12) 

EA - b, i-I I ' 

-E(AlxC!:I)=E(ylxC!:i)= i - a'., witha;= If(x).b;= Ix/(x) (25) 
I x=O x =0 

or one may use: 
sum of the x -e that are > i 
number ofxjs t tBt are ~ i . 

b, 
- E ( AI x < i) = -t . with ai and bi from (25) 

I 

(26) 

This establishes the prediction of future accidents. Analogous results follow 
for the negative binomial. the negative exponential. and for the nonnal 
distribution. 

7.1 . E()'I X> a) : Mixtures of Exponential Distributions 

Our task is to predict E(A I X > a). In the previous section. no assumptions 
were made about the underlying distribution function G of A. In this section. 
the distribution of X is an unknown mixture of exponential variables with 
different means A. Robbins (1980b) shows that from a random sample x l' ...• 
xn of X values. E()'I X > a) can be estimated for any given a > O. Therefore. 
it is possible to predict the average of all future observations taken on those X 
values that exceed a. Given )., X and Yare independent exponential random 
variables, as in the previous section. Only the Xi are observed. Let h'(a) = 
E(AIX > a), and v = IVi is the number of terms XI' .... xn that exceed a. Let 

{
I if Xi>a 

- Vi = 0 if Xi :s a • wi = Vi(xi - a) = (xi - a)+ (size of positive difference); 

I I E(w)... l:wi, I size 
- Ea = E(A X> a) = "E(Vf' which IS estimated by v = (I.e .• COuiit) 

The problem is to estimate 

- E~ = l:w;fv - mean size: E()'I X > a) 

- S' c: I~ vi;'/v - (XIX> a): average). given X > a . and 

- V' = I~ viy;fv - (fIX> a): aveJage Y given X > a . 

o 

(27) 

(28) 

(29) 

Now, for n - 00. - N(O.I) (Robbins. 1980b) . 

Iw,'/v is an estimator of 1:". wilv. l:~Vi;' Iv . l:~v,:y; lv . Approximately 95% 

confidence intervals for E~ = ~l:~ W, S'= ~I~ vi~ ' and U'= ~l:~ VjY are : 

(1) E~: I~Wt ± Ij~ .~~ VW~ -(~l:7 w,'Y. from (27), and 

(2) S': 

(3) U : 

I: w; ± 1.96 .~ 1 In ~ 
V 7V 2v . I ' 
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8. Regression to the Mean: Abbess, Jarrett & Wright 

Gipps (1980) proposed a theoretical model which assumes that sites - in 
some area under study - have true average accident rates which follow a 
Gamma distribution. He derived a fonnula for predicting the magnitude of 
the regression effect for an individual site. Hauer (1980) addressed the 
problem of a group of sites (as Robbins did, see section 6), all having more 
than a given number of accidents, xo. in a 'before' period (and were treated 
together). Hauer did not make assumptions about the distribution of the 
average accident rates, he estimated the regression effect directly from 
accident rates. According to Abbess et al. (1981). Hauer's method is sensitive 
to random fluctuation. Abbess. Jarrett & Wright, following Gipps (1980) 
addressed the question of whether the regression to the mean effect is likely 
to be sufficiently large to be worried about. We follow Robbins' notation. 
Jarrett, Abbess, and Wright (1982) again used a different notation. as Hauer 
does, which does not add to the readability of these papers · Jarrett et al. 
changed notation, probably because Abbess et al. made a mistake in a 
formula. which was corrected by Jarrett et al . These papers and Wright et al. 
(1988), Jarrett al. (1988), Jarrett (1991) are among the most frequently cited. 
As Abbess et al. (1981) note, Bayesian methods have been controversial 
among statisticians for a long time. They show that the Bayesian approach is 
well-suited to analysing accident blackspot data and providing information 
on which to judge the effectiveness of remedial treatment. In the following, 
the assumptions necessary to apply the Bayesian method are given. 

Step 1. Likelihood 
At each crossing. without remedial adjustments, accidents mayor may not 
occur. We suppose that these accidents occur according to a Poisson process 
with a constant intensity of }.. per year: 

Step 2. Prior 

e-).. }..X 
f(x I},,) = -

xl 
(x = 0, 1. 2, ... ) 

The true accident intensity}.. varies over locations. the value for a certain 
location is unknown and is considered a random variable. Suppose that the 
prior distribution of J... can be described as a Gamma density !o(}..), with 
parameters no and Xo : 

no::: number of years of observation 
Xo = number of accidents in period no. 

Then /o(J...) is defined by 

with average 
variance 

(f3la in Robbins' notat b n) 
<p/a2 in Robbins' notation); 

/o(J...) describes our knowledge of the accident frequency A. (Abbess et al., 
1981; Jarrett et al., 1982). In Robbins ' notation with 13 - Xo and a - no: 

(30) 

for }..> O. (30) 
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Step 3. Observations 
Data: n = number of periods of observation, 

x = number of accidents in n periods, x - Poisson with expectation A. 
When in a certain period x accidents are observed, the posterior distribution is 
Gamma with parameters nl and xl' wlEre nl = no + n and xl =Xo +.t. 

Step 4 . Posterior 
The posterior distribution is a Gamma distribution with parameters (ni' Xl): 

nl = no + 1, for one period (one year, e.g.) 
X = number of observed accidents. 

Fo,r a period of one year (n=l), the posterior distribution is: 

(no+l)Xo+x )..xo+x-l e-(no+l)A 
11 ().) = f(A I x) = r(to+x) )..>0 (31) 

(Note that with a = no and f3 = Xo, Fonnula 30 is equal to 30' and Fonnula 
31 is identical to Fonnula 31 '): 

),,>0. (31 ') 

Step 5. Prediction 
If the prior distribution is Gamma, then the predictive distribution, the 
distribution of the number of accidents, a, in the next period. is a negative 
binomial distribution. According to Jarrett et al. (1982): 

q(a) = f(xo + a) 1 a (~)xo 
( 1+ no) (a = O. 1.2 .... ). but 

a! f(xo) 1+ no (32) 

) f(sl+a) 1 a (2.1-) SI q(a - ( 1+ nl) (a = 0, J, 2, ... ) 
- a! nsJ) 1+ nJ (32') 

according to Abbess et al. (1981). [Abbess et al. write: SI + a (= So + s + 
a), see Fonnula (32'), which comes down to: Xo + x + a in our notation, and 
is not correct, it should be So + a. In later publications, they refer to Jarrett et 
al. (1982). who use 'k' instead of So and 'c' instead of no' Substitution of k 
and c for Xo and no ' resp., in the equation corresponding to (31) in l arTett et 

al., y'lelds the correct formUla. ] The variation in the number of accidents over 
locations can be described u sing q(a), an unconditional distribution. If the 
accidents at different locations are independent random variables. and if 
/o()..) is Gamma distributed, th en q(a) 'IS the negative binomial distribution: 

~ e~~ 
q(a) = ftraIA)/o().) d)' , fo().) - Gamma, a-Pa'sson:/faIA)= ar (33) 
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8.1. The Regression Effect 

The posterior expectation is: E(l I x) = ~o : ~ (or: £: i ,in Robbins' 
o 

notation). This is the best estimate of the true accident frequency A. given the 
observed num'lxr of accidents, x. The postenor distribution reflects our 
uncertainty with respect to the value of A. There is variation in the true 
accident rates, )., of the locations with x accidents. This variation is around 
E(l I x). the expectation of the true accident rate l after having observed x 
accidents. 

The difference between E( A. I x) and x is the regression effect: E(l I x) - x , 
which may be a positive or a negative effect. (Jarrett et al., 1982, 1988; 
Jarrett, 1991. 1994), see Figure 1. To determine the size of the regression 
effect, Xo and no must be known. The regression-effect is positive (i.e., more 
accidents than expected) if x < xo/ no' negative if x> xo/ no (less accidents 
than expected). For x =xo/ "0, the regression line is the 'line of 
expectations' and is a linear function of x. with slope 1/(no + I). The 
parameter no necessarily is positive, therefore, the slope is always smaller than 
one (see Jarrett et al., 1982). Estimation of Xo and no from known accident 
data, is an empirical Bayes approach. Determining Xo and no. such that the 
prior distribution reflects a subjective opinion about the accident frequency, 
is the subjective Bayes approach and is not pursued here. 

Figure I. The Regression Effoct. 
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9. linear Empirical Bayes (LEB) Fstimation 

The observed accident frequency need not be the best estimator of the 
underlying mean. The so-called 'naive' method takes 

1. =X or tnaive=x. 

Quite a different method is the' Linear Empirical Bayes' method (first 
described by Robbins, 1977, 1980a.b.c), which yields the 'LEB'-estimator 
(Jarrett, 1991, 1994) for A. According to Jarrett (1991), the LEB estimate can 
be better understood as a regression equation: the LEB formula gives an 
estimate of E(AI x), the regression of A on x. Given the accident frequencies 
in one period for a group of locations, the estimator of the average, A. at a 
location with x accidents is 

~ x~ [s2 -i ] 
ALEB = est. E(AI x) = SI' + --sr- x. 

Here, i is the grand average of the group and s is the standard deviation of 
the accident frequencies over all sites. [If all A'S are equal, then s2 =x; also, if 

- -
i = s2, then i '7+ x (1-7) =i.] 

The LEB-estimator is suited if the accident frequency x is Poisson distributed 
with average A. for each separate location, independe Jlly of all other 
locations, and if the values of A for the different locations can be considered 
as independent draws from a population with grand average i and variance 
s2 - i. If further assumptions are made about the dis tibution of A. bet ter 
empirical Bayes estimates may be obtained, see Abbess et al. (1981), Jarrett 
et al., 1982. In fact, the LEB estimator is equal to Robbins' (1956, 1980a.b.c) 
T-estimator (see sections 7-9). 

The LEB-estimate pulls or 'shrinks' x towards the estimated population 
mean. This results in a smaller total quadratic error, :E(error)2 , than fo r the 
naive estimators. Efron & Morris (J 977) show that the lames-Stein estimator 
z = .i + c (x - i) g'lVes better estimates of the true batting ability for baseball 
players than the individual batting averages (c is the shrinking factor, see 
section 3). The James-Stein estimator does substantially better than the 
averages if the true means lie near each other and can be used without any 
prior information. In historical context, the lames-Stein estimator can be 
regarded as an 'empirical Bayes rule' (Efron & Morris, 1977, p.l27). 
The practical va ue of the LEB estimator is that a better estimate can be 
achieved of the underlying mean, so that the treatment effect can be better 
determined. The LEB-formula yieldS an estimate of the regression line (se:e 
section 1.3 and section 8). 
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9.1. Two-Period Regressio11t 'Before' and 'After' 

Another method to estimate the true accident intensity is the 'two period 
regression method' (Jarrett, 1991), in which a regression model is fitted tD 
accident frequencies at untreated bcations in two separate periods. These 
periods should be equal to the before and after period of the treated location. 
The 'before' frequencies are denoted x, and the 'after' frequencies.) ' and a 
line, y:: a + bx, is fitted to the data. The results can be used to predict the 

1\ 

accident frequencies, y, that would have been expected had the location not 
" been treated. Thus, the effect of the treatment, )' - y, can be estimated from 

(a + bx) - y, a relative reduction of 

" 
reduction in % 

y-y 
:: --r::- x 100% 

y 
(a + bx ) . y x lOO~. = a+bx 7f1 

From the principle of regression to the mean one expects this reduction to be 
smaller than the 

'naive' reduction ( x ~ y) x 100%. 

For a group of treated sites, the total reduction in numbers of accidents at the 
treated sites can be compared with the total predicted number of accidents 
had the treatment not been carried out: 

reduction in % = 
1:( a + bx ) • l:y 

x 00%, I(a + bx) 

where the summation is over the treated sites. 

9.2. Computing the Regression Effect 

Abbess et al. (1981), show the effect of not including infonnation from the 
past. They present accident frequencies from Hertfordshire (England) and 
calculate the size of the regression to the mean using a prior which is based 
on one year, two years, etc. The percentage change R is given by 

( ( 
xo+ X) n ) 

R= no+n x· 1 x 100%, (34) 

where Xo and no represent infonnation from the past (xo = number of 
accidents in the before period, no :: length of before period); x and n 
represent actual information: x :: number of accidents during the present 
period, n :: length of present period). 

When the prior is based on only one year (no = 1) , the regression effect 5 
largest, and diminishes when the prior distribution is based on increasing 
numbers of years of observation. The size of the regression effect in this 
example may be larger than 20 percent (after I year of observation), and 
may diminish to about 11 % (after 2 years) and to about 8% in three years. 
The average number of accidents is 762, the average number of sites 
included per year is 270 (Abbess et al., 1981). 
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10. Estimating Safety 

In the context of managing the 'unsafety' of traffic systems, two 
fundamental questions arise (Hauer & Persaud, 1987): first. how b identify 
systems that are unsafe, and secondly, how to estimate the safety effect of 
warning devices, such as crossbucks, traffic lights, etc. 

Safety is a property of a specific entity, a crossing or a driver, etc. 'Safety' .~ 
defined as the number of accidents and their adverse consequences expected 
to occur, in the long run, with relevant conditions unchanged. The 'unsafety' 
of a crossing, A., is unknown, but can be estimated by i... For a group of 
similar crossings, the average of their A'S will be denoted by E(A), the 'grand 
average' and the variance of their A'S is denoted Var(A). 

The observed number of accidents, x, at a fixed time of the day and at a fixed 
location is supposed to be Poisson distributed with average A. In each period, 
each crossing is characterized by its own A. Each crossing has unique 
characteristics. Apart from these, it is possible to distinguish crossings with 
comparable characteristics, these crossings form a group of crossings. 

From the number of observed accidents x, the average A is computed. The 
average number of accidents is a measure of the (un)safety of that particular 
traffic system. Crossings or rail-highway grade crossings with the same or 
comparable characteristics such as traffic flow, number of lanes. type of 
crossing etc., may treated as a group, with 

- n(x) is the number of crossings in the group, with x accidents, x = 0, I ,2, .. ' 
- E(A) is the average value of the group, 
- Var(A) is the variance of the group. 

Since we are not concerned with exactly one Poisson distribution. but w lh a 
mixture of Poisson distributions, this mixture has a larger dispersion than the 
Poisson distribution, and it holds that (see Robbins, 198Oc: Hauer, 1986; 
Hauer & Persaud, 1983; Persaud & Hauer, 1984) 

E(x) == E(A) (from (24» 
Var(x) = E(}.) + Var(A) . 

Furthermore, 

x = I [x· n(x)] I I n(x) 

s2 = ~ [(x - x)2. n(x)] / l:: n(x) 

aO.) = (V~r(A»l 2 = (s2-x)I~, since Var(x) = E(A) + Var(}.). (from (24» 

Example J (taken from Hauer , 1992) 
The distribution of the number of accidents in a homogeneous group of rail­
highway grade crossings, defined by {urban area, 1 track. 1 to 2 trains per 
day, 0 to 1000 vehicles per day, crossbucks}, is characterised by a (A) = 2}" 
hence, the estimate of the standard deviation of the average is twice the 
expected value. Thus, even in a homogeneous group of such cross'lOgs we 
cannot assume that all }. 's are equal. It might be, that with larger groups, the 
variance of the average, Var(}.), will tend to zero, so that the group may be 
characterised by one value, the group average. Using the results of an 
analysis of variance, this t \tiled out to be not the case for this group. 1T0m 
this, Hauer concludes that the }.'s have a distribution with positive variance. 
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10.1. Poisson-Gamma- model 

If the distribution of the averages A in a group of systems (crossings. drivers. 
etc.) can be described by a Gamma distribution. then the frequencies 

a = n(x) 

follow a negative binomial distribution, see Example l The reverse is also 
true: if the counts a follow a negative binomial distribution, then the averages 
are Gamma distributed (Jarrett et al., 1982). The fit of the negative binomial 
distribution to Hauer's data is close. Another example is the Hertfordshire 
data (Abbess, Jarrett. and Wright, 1981, p. 538-541). The authors not only 
describe the goodness-of-fit of the model, but they also give an account of 
the phenomenon of regression to the mean. Using the negative binomial 
distribution. tables for the test statistic, and data over more years for one 
location, these authors illustrate the phenomenon of 'regression to the 
mean'. This model yields a criterion for the increase of the number of 
accidents per year. 

10.2. Parameter Estimation 

Hauer & Persaud (1984) show that, if for each crossing, x - Poisson and for 
each group of crossings A - Gamma, then the expected value for a crossing 
can be best estimated using 

E=X + [E(}") I (E(}") + Var(}..»] [E(}") -x] 
= a E(}") + (1 - a)x , in which 

a = (1 + Var(}..) I E(}..)t 1 (from (18» 

(from 11.1 and 11.2), Here, E is a mixture of observed (x) and expected 
(E(A»; a is a weighting factor, 0 sas 1. 

If Var(}..) »E(}"), the group is heterogeneous (different averages); 
small weight for data: a, is small and E == x 

If Var(}..) - E(}"), then homogeous in the averages. (I-a) is small. E = E(}"), 

A different estimation procedure is by using multivariate analysis: Hauer 
(1986; 1992), using GUM (Aitkin et al.., 1989), the negative binomial 
distribution. 
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11. ' Bi~ by Selection: Hauer, Hauer & Persaud 

Hauer (198Oa) describes the overestimation of the effectiveness of counter­
measures when systems (intersections, drivers, vehicles, etc.) are selected on 
the basis of their lack of safety. This was called the regression effect (Jarrett et 
aJ., 1982; McGuigan, 1985a): systems that have, in some year, accident rates 
above average tend to have lower accident rates in the next year. Hauer 
presents a method to estimate this bias by taking the accident history into 
account: Pij is the probability that system i has j accidents. Out of n systems 
(e.g., intersections) a number have to be selected for countermeasure 
implementation because they appear to be hazardous. Those systems are 
chosen that during some period of time t had x or more accidents. With 

B(x): expected # accidents during t before countermeasure (B: 'Before'), 
A(x): expected # accidents during T after countermeasure (A: 'After'), 

and when the countermeasure has no effect, the expected 'apparent' 
reduction of accidents per unit of time (with constant expected number of 
accidents) is: 

Bias: difference D(x) = B(x)!t - A(x)!T 

the expected apparent reduction in numbers of accidents per unit of time 
(D(x) = B(x) - A(x) for equal t and n, assuming that the true number is equal 
in the before and after period. This is the phenomenon of 'regression to the 
mean'. 

11 .1. 'Before' and 'After' Period are Equal 

If the 'selection bias' is not eliminated from the results. the effectiveness of 
the countermeasure may be overestimated. The correction of the bias follows 
from the comparison of an unbiased estimate of A(x) and the actual number 
A(x). Define 

- the expected number of accidents at system i is A; (i =1 .... , n) 
- the probability that system i has j accidents is Pij 

CD 

- the probability that system i is chosen = ,1: Pij (34) 
oaJ=k 

- the contribution of system ,' to B(k) is I jp,';' (35) 
J=k ~ 

n oa 
Summation over all systems gives B(k) = ,1: ,1: jp,';' (36) '=1 J=k ~ 
and Pij is Poisson distributed. Thus, 

(Hauer. (980) (37) 

When the countermeasure has been imp lemented, the expected number of 
accidents at system i is equal to A;, hence, for all systems 

n CD 

A(k) = 1: A, I p .. 
;= 1 'J=k 'r hence A(k) = B(k+ 1). (38) 

(Hauer, 1980; Hauer & Persaud, 1983). fJ is an estimate of the accident 
history ' before', just as A stands for 'after' . B(k) includes all systems that 
exceed some critical thresho'/d: the number of accidents is larger than or 
equal to k. 
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11.1.1. . Size of Selection Bias 

Hauer presents an example of a large sample of road sections from which silx 
were selected to be resurfaced. They were selected because their three years 
accident totals prior to treabDent were 15 or more: 15, 15, 16 , 18. 18,23, and 
27. Thus B(15) = 132 accidents. WIthout remedial treatment, one should 
expect for the next three years A(lS) = B( 16) = 0 + 0 + 16 + 18 + 18 + 23 + 
27 = 102 accidents, hence the b'~s D(k) = 132 - 102 = 30, a sizeable effect. 
The correction for the selection bias is 

• B(X~A(X) % correction = ~x) x 100%, 

the percentage regression-to-the-mean. In general, with increasing 
observation periods, the bias decreases: lim D(k) = 0 (Hauer, 1980a; Wright 

r-oo 
et al., 1988). 

11.1.2. Selection Bias is One-Sided 

11.2. The Shaman 

While the estimator, which eliminates the selection bias, is unbiased, it may 
not be precise (Hauer, Byer & 10ksch, 1983). The bias of the original, biased, 
estimator is always in one direction. Use of the biased estimator may result in 
accepting ineffective treatment as effective. The unbiased estimator has a 
large variance: E(t) = A and E( Ab) = A. + bias (see Hauer et al., p. 324). The 
biased estimator J.b may have a lower mean squared error than the unbiased 
estimator J.. However, for sufficiently large n the unbiased estimate will have 
a smaller mean squared error than the biased estimate. Hauer et al. give 
estimates of the variances of the biased and the unbiased estimators and other 
statistics, In the above example, the unbiased estimator would lead to a two­
sided 90% confidence interval of [66 - 138], the biased estimator to [114 -
150]. Thus, with an 'after treatment' accident record of 110, the test using 
the biased estimator would have lead to the conclusion of a significant 
improvement, whereas the test using the unbiased estimator would not. On 
the other hand, with an 'after treatment' accident record of 145, the test 
using the biased estimator would have lead to the conclusion of no 
significant change, whereas the test using the unbiased estimator would have 
lead to a significant worsening of the situation. 
Because the bias is always in the same direction, use of the biased estimator 
will, in the long run, result in ineffective treatment being accepted as effective 
(Hauer, Byer & Joksch, 1983). 

Hauer and Persaud (1983)'s 'Common Bias in Before 1Uld-Mte r Accident 
Comparisons and Its Elimination', shows that the selection bias is comparable 
to the 'all-pervasive and empirically substantiated phenomenon of regression 
to the mean' (Sir Francis Galton, 1877): tall fathers tend to have, on average, 
shorter sons and vice versa. The parallel in traffic safety is easy . Intersections, 
drivers, etc., are often selected for improvement on behalf of a bad safety 
record . Due to the principle of regression-to-the-mean, one should expect 
these systems to have less acc'Ucnts iln a subsequent period even if nothing is 
done to them . Yet in a s'mple before-and-after study, such an observed 
reduction is normally interpreted as indication that a countermeasure has 
been effective. To quote Hauer and Persaud (p. 164): 

"Imagine now what wou if have happened had the Ministry hired a 
shaman to pray jor accident reductzon on road sections that had in the 
first year seven or more accidents . The apparent effectiveness oj this 
'treatment' is ( ... ) about 30 percent . ... " 
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11.2.1. Expected Number of Accidents 

When the length of the before period increases, the relative size of the 
regression effect diminishes (cf. Abbess et al .• 1981; Jarrett et al., (982), 
because relatively large (or small) effects tend to average out in the long run. 
Hauer & Persaud raise the question of how to obtain unbiased estimates in 
uncontrolled before-and-after designs. Let y denote the number of accidents 
occurring on a system during some period before treatment and let tJ denote 
the number of accidents expected to occur on the same system during an 
after period of equal length had treatment not been applied. The problem is 
to estimate y. Let B(k) be the expected number of accidents on the chosen 
systems in period 1 ('Before') and A(k) be the expected number of accidents 
on the chosen systems in period 2 CAfter'). Hauer and Persaud derive three 
more or less equivalent estimation rules (from 12.1 - 12.5). namely: 

A(kl = B(k+ 1 l: the number of accidents expected to occur in the after period 
on systems that during the before period had k accidents is the number of 
accidents occurring on systems that had (k+l) accidents in the before period. 
This rule leads directly to the third estimation rule. 

A(k) - A(k+ 1) = B(k + 1) - BCk + 2): the number of accidents expected to 
occur in the after period on a system that during the before period had k 
accidents is the number of accidents occurring on systems that had (k+ 1) 
accidents divided by the number of systems on which k accidents occurred in 
the before period. This rule leads to y(k) = 6(k+l). 

y(k)- A (k,) - Alll+l l and 6,(,l; ):-8:(k + 0- BIl + 2) the number of accidents 
expected to occur in the after period on systems that during the before 
period had k or more accidents is the number of accidents occurring on 
systems that had (k+ 1) accidents or more in the before period. 

The y(k) may be counts, relative frequencies, or cumulative frequencies. 
Accident data from different countries. relating to road sections. intersections. 
traffic circles, driver violations. driver accidents, and golf players are used to 
illustrate (the estimation of) the size of the bias, the technique for its 
elimination, and to examine the success of the debiasing procedure. 
Explanations are given for disproportional decreases, e.g., drivers with one or 
more violations or accidents in a first period are observed to have, on 
average, 60 - 80 percent less violations or accidents in the second period, in 
spite of the increase in the number of violations and accidents from the first 
to the second period. This change is much larger for drivers than that for 
elements of the road system. Furthermore, the smaller the average bwards 
which observations regress. the larger the change (p. (67). 

1 1.3. Empir ical Bayes vs Nonparametric 

Persaud and Hauer (1984) compare two methods of debiasing, a Bayesian 
and a nonparametric approach. The Bayesian method was found to yield 
better estimates. The nonparametric method overestimates the observed 
rumber <f accidents or violatio'Jl; per driver. For systems with zero or one 
accidents/violatio Ill, the nonparametric method perfonns at least as we I as the 
Bayesian method, which is an important result, because systems with k = 0 or 
k = 1 accidents are often of interest. By smoothing the frequencies, the 
Bayesian method yields the more reliable estimates for smaller groups of 
systems. Use of control groups yields better estimates of the number of after 
period accidenl" without treatment. 
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11.3.1 . Nonparametric Method 

The nonparametric approach is simple to apply and only assumes a Poisson 
distribution for the accidents (see Robbins, 1956). To estimate the number of 
accidents, at> expected to occur in an equivalent after period on a system that 
had k accidents in the before period, we need 

Nk = number of systems with k accidents, and 
Nk+l = number of systems with (k+l) accidents. Now, 

ak = (k + 1) Nk:1 
• (from (11» 

11.3 .2. Empirical Bayes Method 

The empirical Bayes method is just as simple as be nonparametric one. Its 
assumptions are (1) a Poisson distribution for the acc'tJicttts, and (2) a 
Gamma distribution for the distribution of the averages in the populat'lon of 
systems. With these two assumptions, the number of systems with k accidents 
must obey the negative binomial distribution. The expected number of 
accidents, ale, in the after period on a system that had k accidents in the 
before period is 

ale = (k + 1) Nk1 

N~ is the number of systems expected by the negative binomial distribution 
to have k accidents (see Robbins (1956) and sections 6 and 7). The before 
period accident data are used to estimate of the sample average, A. and 
sample variance, s2 for the population of systems. From these, parameter 
estimates for {3 and a of the Gamma distribution are obtained (cf. Robbins, 
1980a): 

).2 
f3 = -;z-::r , and 

). 
a= :T:'T s -~ (A. < $2) (see (18» 

(also. see Robbins, 1956; Jarrett et al.. 1982; and Abbess et al.; 1981). If the 
negative binomial distribution fits the observed frequencies perfectly. the two 
methods, empirical Bayes and nonparametric. give identical estimates. 

11.3.3. Comparison of Both Methods 

1 14. The S~ve 

From their empirical research, Hauer & Persaud (1983) conclude that for 
both driver and road systems. the Bayesian method is likely to give somewhat 
better estimates. For the drivers, the nonparametric method consistently 
overestimates the number of accidents or violations per driver. For systems 
with zero or one accident, the nonparametric method is slightly better. For 
any value of k larger than 1, the Bayesia n method 'IS better. 

To identify hazardous locations or blackspots, a two-stage process is used by 
Hauer and Persaud (1984). The first stage acts as a sieve. A good sieve is one 
that allows through all sites that do not require remediall activity and retains 
all sites that do require detailed study. An ineffic!~nt sieve is one that retains 
a large number of sites that do not need close scrutinity and allows black­
spots through its holes (Hauer et al., 1984) . The quality and performance of 
a common sieve is evaluated in terms of a decision theoretic framework. 
What one hopes to find is the average number of accidents in the long run, 
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for each site. The difficulty is that accident histories are subject to substantial 
random fluctuation. The quality of the sieve can be evaluated by the 

1. Number of Cl') sites selected (measure of effon: 'S') 
2. # truly deviant sites among those selected (correct positives, 'CP') 
3. # sites captured by the sieve but not deviant (false positives. 'FP') 
4. # truly deviant sites not captured by the sieve (false negatives, 'FN·) 

The number of sites selected for inspection is CP + FP. These are the sites for 
which the number of accidents, x, exceeds a critical value, X*:.t > x* . Truly 
deviant are sites for which A> A* , the CP's and the FN's (not selected). Now. 
n(x) is the frequency of x; F(A Ix) (see the Appendix) is the probability that 
the expected value of the number of accidents at a site is less than or equal to 
A when the number of accidents actually recorded is x. F(x lA) is known for 
every case, F(A I x) is not. Knowledge of n(x) and F(}' I x) will enable to 
gauge the penormance of the screening process, the sieve. How to obtain 
F(AIx), is discussed below. 

11.4.1. Sieve Efficiency 

According to Bayes' theorem, f(AIx) ex j{XIA) dG(A). Integrat"Jon of I CAlx) 
yields F(AIx). The coefficient of proportionality is selected such that 

co 
f F(AIx)dA = 1 ;j(xIA) is assumed to be Poisson distributed and the numbers 
o 
G(A) are ascertained from n(x), the (empirical) frequencies of sites with x 
accidents. This is because the number of sites with x accidents. n(_~). must be a 
reflection of the distribution of }. among all sites (Hauer & Persaud. 1984). 
Therefore, the probability that a random selected site has x accidents is: 

{ 
n(x)} 00 

E rnrxr = I f(x I A) dG(A). (see (2» 

(see section 3.2). When G(}') is a Gamma distribution, and x is Po·lSson 
distributed, the probability that a random selected site has x accidents obeys 
the negative binomial distribution. The parameters of G(A) can be estimated 
from the sample average and variance (12) and (13), the LEB-estimators: 

1) Determine sample average and variance (summation is over all values of x) 

x = I (x n(x)] I In(x), S2 = [I(x - i )2 n(x)] / In( x) 

2) Estimate parameters a and f3 and determine G( A): 

eX = x /(s2 -i), ~ = .r.2/(s2 -i), G()") = af3 ;.P-le-a)./ fCm, when}. <:: o. 

It follows thatj(xlA.} ex )..x+f3- 1 e -}.(I+a) ,a Gamma density. The posterior 
density j(}.*Ix) is a Gamma dens:ty with a en (J known. F(}.*lx) may be found 
by using numerical integration of 

t.* }.. HP -] e -}.( I + a) d}' 

! ).. HP -] e -}.(I + a) d}' -
o 

(see (8» 

F(A*lx) is the posterior probabirlty that a site is truly deviant given the 
observed number of acc·ldents. The probability distribution function depicted 
against}., shows, for each value of }., the number of systems that have more 
than x accidents per year. From this, the number of correct (false) negatives 
and positives can be ascertained. The number of sites to be expected, the 
numbers of correct positives, false positives and false negatives serve as 
measures of performance fo r the sieve. 
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12. Migmtion of Accidents 

A lot of research has been devoted to reducing the number of accidents. Part 
of this research is focussed on identification of blackspots. their remedial 
treatment and the evaluation of the success of the treatment. The correction 
for 'regression to the mean' has become standard use. 

Boyle & Wright (1984) suggest a migration of accidents in Greater London 
(UK). They studied accident data before and after remedial treatment of 
certain sites and investigated bordering sites as well. They concluded that, in 
the after period, the numbers of accidents at bordering sites increased with 
ca. 10% (after correction for trend). They explained this 'accident 
migration' into neighbouring areas by a reduced awareness of drivers as a 
result of the improvements: the risk compensation hypothesis (also see Wright 
& Boyle, 1987). Probably, high-risk locations tend to cluster in busy areas. 
Stein (1984) remarked that regression to the mean applies to locations which 
are treated (with an expected decrease in accident frequencies: the 'negative 
regression effect') as well as to locations which are not treated (with an 
expected increase in accidents, the 'positive regression effect'). McGuigan 
(1985a), in an analysis of personal-injury road accidents (10 011 accidents 
in 1980 - 1982, 70% of the acccident total) in the Lothian Region (UK). 
shows that, from the principle of regression to the mean. an increase of 10% 
in accident frequencies can be expected for bordering sites, and a decrease of 
about 25% for treated locations. A regression effect of -31 % brings the 
treated high-risk locations at the level of the average of high-risk locations. 
In the same way, the regression-to-mean effect of + 15% brings the bordering 
untreated high-risk locations at the level of the high-risk locations in the 
sample (the 'inverse regression-effect', see Maher, 1987). The major part of 
the migration effect must be ascribed to regression to the mean. 

Persaud (1987) shows that migration of risk can arise by certain conversions , 
e.g., by changing from two-way to multi-way stop control which is not 
applied to all intersections. This may lead to incorrect anticipation (drivers 
incorrectly expect the other stream to stop). Also, drivers may choose other 
routes so that traffic is redistributed, possibly because they do not want to 
stop or want to keep their risk-level constant. Most of the accidents saved at 
the converted intersections had apparently migrated to the unconverted 
intersections. 

Maher (1987) hypothesises that the expected numbers of accidents are 
spatially correlated: there is a positive correlation between the expected 
numbers of accidents at neighboring sites, since the most important 
explanatory variable is exposure. or traffic flow (see e.g., Maycock & Hal ~ 
1984). Besides this, there are other explanatory variables such as type of 
location and type of road, which are often comparable at neigbouring sites. It 
is quite natural that accident frequencies are similar at neighbouring sites. 
Maher presents simulation results of numbers of accidents at spatially 
correlated sites, computed in two different ways: (1) a spatially moving 
average, and (2) a clustering procedure. The contribution to the expected 
accident intensity (A,) at some 'centre' is a decreasing function of the 
distance between the adjacent location and the centre. Using this. Maher 
presents an estimator of the migration effect: 
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where N means'Neighbour' and BN resp. AN (,Before' resp. 'Mter') are 
the sum of observed (Yij) and expected (Aij) numbers of accidents at 
neighbouring sites that showed more accidents than some criterion value, k. 
Comparable entities were detennined for all treated and untreated locations 
(independently of neighbourship). P reg is the regression-to-the-mean effect 
(there was no remedial treatment in the simulations). 

At a treated location, A is large, and to be selected for improvement. y has to 
be large too (y> k, otherwise no treatment). At a neighbouring site. y is not 
large (site is not selected for improvement) and A will, in general, be large, 
because the location borders a treated site. Since the true accident rate in the 
previous period was }.., the sign of ().. - y) /y , the apparent proportional 
increase in the accident frequencies, probably will be positive. This was 
simulated by Maher and they conclude that the model gives an explanation 
of the migration hypothesis. Pmig remains larger than 10%, as in the original 
data from London. 
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13. Overview of Types of Distributions and Statistics 

ef(x I),) = Pr(X = x I A = ).) = e-}. ).X I x.': Poi sson kernel 
E(X I ).) = A; E(X2 I ).) = ).2 + ). 

• fa (x) = f: fix I ).) dG().), marginal probability density function for x 

marginal random variable whose c.d.f. is F G (x) 

e FG (x) marginal cumulative distribution function corresponding to fa (x) 

e Fn_1 (x) empirical c.d.f. of x, estimate of F G (x) 
such that Fn_1 (x) - F G (x) (n-co) (Maritz et al., 1989, p. 13) 

- IPa (x) 
fIX) ).!+ J e-X dG()') .t. (x + 1) 

= Jl - (x + 1) G. posterior mean J: ).x e-X dG{).) - fG(x) ' 

= regression of A on XG 

-IG(x) f(X) 'Ax e-x C CZ) 

= 0 xr dG().) = J /(xl'A) dG().) mixed Poisson distribution 

- E()'I X=x) = f: 'AI (xl),) dG().) II(x» = (x+l)f7~~) 

= IPG (x) 

posterior mean for ). 

e E('Af(xl)'» = f:).1 (~).) dG().» = (x+ 1) I(x+ 1) 

• E().2/(xllY) = f:).2 I l.tl)') dG()') = (x+ 1) (x+2)/(x+2) 
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