
Control strategies for a highway network

A joint research project of SWOV, the Technical University Delft and the Institute for Perception
TNO sponsored by the Dutch Ministry of Transport and Watermanagement

PART III

W.B. Verwey & T. Heijer. Linking Driver Visual Workload on Near-congested Highways to Induc
tive Loop Measurement.

C.M. Gundy & T. Heijer. A Traffic Model based upon Neural Networks.

R-94-34 III
Leidschendam, 1994
SWOV Institute for Road Safety Research, The Netherlands

SWOY Institute for Road Safety Research
P.O. Box 170
2260 AD Leidschendam
The Netherlands
Telephone 31703209323
Telcfax 31703201261

Contents

PART I

1. Preface
1.1. Introduction
1.2. Synopsis of the results

2. The reports

E. de Romph; HJ.M. van Grol & R. Hamers\ag. 3DAS (Three Dimension
al Assignment): A Dynamic Assignment Model for Advanced Traffic /v/an
agement and Driver Information Systems.

E. de Romph; HJ.M. van Grol & R. Hamerslag. Application of 3DAS
(Three Dimensional Assignment) at the Washington Metropolitan Area.

PART 11

Dr. P.H. Polak. & T. Heijer. Control Strategies for a Highway Network.

E. Wiersma & T. Heijer. Safety of the Traffic Process on Highways.

PART III

W.B. Verwey & T. Heijer. Linking Driver Visual Workload on Near-con
gested Highways to Inductive Loop Measurement.

C.M. Gundy & T. Heijer. A Traffic Model based upon Neural Networks.

Linking Driver Visual Workload on Near-congested Highways
to Inductive Loop Measurements

Willern B. Verwey (IZF-TNO) & Torn Heijer (SWOV)

2

ABSTRACT

In this report a study is presented in which two indicators for visual
workload of the driver were measured in an instrumented car while
driving on a four- and six-lane freeway. For one-minute periods
during which the car passed inductive loops in the road surface, a
parameter was computed which was assumed to correlate with traf
fic safety. This was the weighed localized Time-to-Collision (TIC).
The research question in this study was whether visual workload of
the driver, which is also assumed to be related to traffic safety, cor
relates with weighed localized TIC. If so, this would open the pos
sibility to assess traffic safety from inductive loop data. In the ex
periment, which involved twenty subjects, half of the subjects per
formed a visual detection task which was secondary to driving.
Performance on this task is a good indicator for visual workload.
The other half of the subjects drove the route without performing a
secondary task and Steering Activity Rate (SAR) was taken as in
dicator for visual workload. Unfortunately, due to technical prob
lems with the registration of the inductive loop data, the data of
only three subjects in the visual task condition and six in the control
condition could be processed. This limited set of data was analyzed
but the number of occurrences of high weighed localized TICs was
too low to arrive at [urn conclusions.

3

SAMENVATTING

In dit rapport wordt een studie gerapporteerd waarin twee in
dicatoren voor de visuele werkbelasting van proefpersonen in een
geinstrumenteerde auto werden gemeten tijdens het rijden op een
autosnelweg. Voor de ~en-minuut periodes gedurende welke de auto
een inductie-lus in het wegoppervlak passeerde werd een parameter
berekend waarvan aangenomen werd dat deze gecorreieerd is met
de verkeersveiligheid. Dit was de 'weighed localized Time-to-Colli
sion' (TIC). De onderzoeksvraag was of de visuele werkbelasting
van de bestuurder, die ook gerelateerd wordt aan verkeersveiligheid,
correleerde met de weighed localized TIC. Indien dit het geval is
zou dit inhouden dat een maat voor de verkeersveiligheid uit de
inductie-lus gegevens afgeleid kan worden. In het experiment, waar
aan twintig proefpersonen deelnamen, voerden de helft van de
proefpersonen een visuele detectietaak uit tijdens het rijden. De
prestatie op deze taak is een goede indicator voor de visuele werk
belasting. De andere helft van de bestuurders reed de route zonder
zo'n tweede taak en de 'Steering Activity Rate' (SAR) werd ge
bruikt als indicator voor visuele werkbelasting. Helaas bleek dat
door technische storingen in de Ius registratie, de gegevens van
slechts drie proefpersonen in de visuele conditie en van zes proef
personen in de controle conditie konden worden verwerkt. Deze
beperkte set aan gegevens werd geanalyseerd maar het aantal keren
dat er een hoge localized weighed TIC optrad was te gering om tot
harde conc1usies te komen.

4

INTRODUCTION

Technological advancements have opened up the way for the devel
opment of sophisticated traffic flow control systems on freeways
which should not include the various disadvantages of current sys
tems. Current systems, for example, are aimed at controlling traffic
flow characteristics at an aggregated level, such as average speed,
average homogeneity, and average density (Wiersma & Heijer,
1992). The implicit assumption underlying current traffic flow con
trol systems is that traffic safety will automatically increase when
traffic flows are well-controlled. However, there is only limited
insight in the relation between traffic safety and processes within
the traffic stream. For example, it seems plausible that the turbu
lence developing just before congestion, reduces traffic safety
severely. If so, future traffic control systems should include pos
sibilities to detect unsafe situations within a traffic stream. The pur
pose of the present experiment is to explore possibilities for moni
toring traffic safety from the information gathered by inductive loop
detectors in the road surface. If this were possible unsafe situations
may be prevented by appropriate countermeasures such as changing
the posted speed limits, ramp metering, or giving route advices at
earlier exits.

One way in which safety is often assessed is by the measurement of
driver workload which is known to be related to the error chance
(e.g. Wickens, 1984). There are many studies showing that driving
performance deteriorates under high workload levels (e.g. Brown,
Tickner, & Simmonds, 1969). In itself, this does not necessarily
mean that safety is also affected: Human drivers have been found to
be able to drop low priority tasks when their attention is really
required for driving (Rumar, 1986; Wierwille & Guttman, 1978) or
they simply drive more slowly (Harms, 1991; Parkes, 1989; Verwey
& Janssen, 1989). Still, the claim that safety is jeopardized in high
workload situations is supported by evidence from various sources.
In road traffic the most direct evidence comes from studies showing
high correlations between average workload in specific situations
and the reported number of accidents in those situation (Harms,
1986; Taylor, 1964). Also, accident analyses have shown that insuf
ficient adaptation of attention to current driving demands, which is
likely to occur in high workload situations, caused 30 to 50 percent
of all traffic accidents (Treat, Tumbas, McDonald et aI., 1979;
Sussman, Bishop, Madnick, & Walter, 1985). Together, these and
other findings corroborate the general claim that traffic safety
decreases when workload increases in a specific situation.

Recent research has shown a dissociation of visual and cognitive
workload in various road situations (Verwey, 1991, 1993b, 1993c).

5

For example, visual workload is high and mental load low during
curve driving whereas both are high at roundabouts. Both forms of
workload are probably related to traffic safety. On the one hand,
mental overload increases the chance that attention is not directed at
dangerous events in the traffic environment and that anticipatory
actions, such as increasing headway when cars upstream are
decelerating, are not carried out. On the other hand, VISUal overload
may prevent one from simply detecting an impending danger. How
ever, given the relatively limited mental load associated with free
way driving for experienced drivers (Verwey, 1991,1993b) it is
likely that visual workload at freeways is more closely related to
traffic safety than mental workload. Earlier research shows that
visual load in driving can be assessed by a visual detection task
which is secondary to driving (Verwey, 1991, 1993a, 1993b,
1993c).

In addition, half of the subjects served in a condition in which there
was no secondary task. This control condition was used to test pos
sibilities to derive an indication for traffic safety from the way
drivers control the wheel. Verwey (1991, 1993b) measured work
load and SAR in a number of traffic situations and suggested that
Steering Activity Rate (SAR: Antin, Dingus, Hulse, & Wierwille,
1990; MacDonald & Hoffman, 1980) is related to visual workload.
Since SAR can be unobtrusively measured and has a high temporal
resolution as compared to visual workload measurement (about one
measurement per s with SAR vs. one per 3 to 4 s with the second
ary task), SAR may be an interesting measure for assessing visual
workload in driving. However, as SAR is affected also by the load
associated with the secondary task (Verwey, 1991) SAR caused by
driving can be measured only in a control condition.

So, the present study investigated the level of visual workload as
sociated with various levels of congestion and traffic density on a
freeway. From the inductive loop measurements a criterion was
determined which might indicate traffic safety. This was done by
calculating the average Time-to-Collision (TIC: Van der Horst,
1990) in the one minute period during which the instrumented car
passed an inductive loop. This period started about 30 s before the
instrumented car passed the loop and ended about 30 s after pass
ing. This criterion was called the weighed localized TIC which in
dicates the frequency that low and critical TIC values occur. Its
derivation is described in the Method section. The aim was to find
whether there is a consistent relation between weighed localized
TIC and visual workload and SAR onboard cars.

6

METHOD

The driving task
The experimental route was part of a 17.2 km route, about half of
which included driving through the Benelux tunnel when heading
north and half of which when driving south through the tunnel, back
to the starting location. Subjects in the secondary task condition
performed a visual detection task at the entire route. Data gathered
at a 5700 m stretch in the north direction, including the 1150 m
long tunnel, and data gathered at a 5000 m stretch in the south
direction, also including the tunnel, were used for analysis. When
driving the route once, 8 inductive loops were passed in the north
and 8 in the south direction. Without congestion, driving the route
once took about 15 min.

The reason for taking this particular stretch of freeway in the ex
periment was the frequent occurrence of near-congested traffic and
the high density of inductive loops. Outside the tunnel there was a
loop each 300 m, inside the tunnel each 100 m.

In an attempt to evaluate performance under varying levels of the
TIC criterion described below, each subject drove the route more or
less continuously between 15.30h and 17.30h. Time of driving was
chosen such that the last runs were expected to coincide with rush
hour and, possibly, congestion whereas earlier runs included low
density traffic. The experiment took place under normal weather
conditions (bright, cloudy, or light rain conditions; not with fog or
heavy rain).

Secondary task
Half of the subjects performed a task secondary to driving: The
visual detection task required subjects to vocally indicate that they
had detected a target stimulus on a dashboard-mounted display by
saying the Dutch equivalent for 'yes' (i.e. 'ja'). To prevent periph
eral detection of stimuli a neutral stimulus CGG') was presented
between stimuli. Targets were all two-digit numbers ranging
between 19 and 100. The intervals between onset of succeeding
stimuli varied randomly between 2 to 4 s. Presentation time was
750 ms. In the control condition no secondary task was performed.

Procedure
Subjects were welcomed at the Institute at about 14.00h. where they
obtained an oral instruction on the aim of the study. They then
drove to the experimental route which took about 60 min. During
this drive, subjects in the visual detection task condition practised
the secondary task for about 5 min. When they arrived they drove
the experimental route once without the secondary task. At about

7

15.30h the experimental drives began. Driving the experimental
route, which took about 15 min, was always followed by a short
break of about 5 min. Then the next drive started. For safety rea
sons, a licensed driver-training instructor acted as experimenter who
could take over with dual controls. It was explicitly stated, before
and during the experiment, that the secondary task was only of
minor importance and that the subjects were supposed to drive as
they would normally do, They were, for example, allowed to change
lanes when they felt like doing so. Hence, only when the driving
task would allow them to pay attention to the secondary task they
were supposed to do so.

Apparatus and data registration
The experiment was carried out in one of the institute's instru
mented cars (Van der Horst & Godthelp, 1989). This car, a Volvo
240 station-wagon with dual controls, contains an IBM 486 personal
computer and various possibilities for measuring driving behaviour
and generating stimuli.

Secondary task stimuli were presented on a plasma display mounted
high on the centre panel of the instrumented car. A black cardboard
shield was placed over the display to reduce effects of glare. The
eye-screen distance was about 65 cm for a normal subject of about
1.80 m length. The height of the stimuli on the screen was I cm
(0.9° for a normal subject), the width 0.75 cm per digit (0.7°). The
visual angle between the normal fixation point on the road ahead
and the screen was about 27° horizontally to the right and about 20°
vertically down.

During the experiment, the subjects' responses were typed into the
computer by the technician in the back of the car. To prevent mish
earing of the subjects' responses subjects wore a light-weight head
mounted microphone which was connected to a headphone worn by
the technician. Driving performance was measured in terms of
speed and position of the wheel. These were registered at a 10 Hz
sample rate and were used for later derivation of Steering Action
Rate (SAR). In order to synchronize workload measures with regis
trations at the individual inductive loops at the experimental route
the on-board computer clock was synchronized with the clock of the
road-side computer that registered the loop data. Together with the
onboard distance registration this allowed analyses of the traffic
conditions at the moment the instrumented vehicle passed the loops.
Video registration of the forward scene from the car were made
with the aim to have experts judge the safety of various situations.
These data will be reported else where.

8

Data analysis
Secondary task perfonnance was quantified for each subject in the
period of passing an inductive loop. In total there were eight such
loops when driving north and eight when driving south. Steering
wheel position was recalculated later on into Steering Action Rate
(SAR). SAR included the number of times per second that the ab
solute rotational velocity of the wheel crossed the five degrees per
second threshold in either direction (from::;; 5°/s to > 5°/s, or v.v.).
To reduce effects of noise a transition was counted only when two
succeeding samples in the data file showed a value of either below
or above this threshold (Le. when that rotational velocity occurred
for more than 100 ms).

In the course of the research programme of which the present study
is part (see Wiersma & Heijer, 1992), several parameters were
defined that can easily be derived from raw loop data and were as
sumed relevant, either as a qualifier of individual behaviour or as a
qualifier of the general context. The parameters measured by the
inductive loops were: speed, headway and speed difference. From
these parameters Time To Collision (TIC) of succeeding vehicles
can be calculated when, by definition, the second vehicle is the
faster one. This criterion was chosen as a measure for traffic safety
because TIC is a well known indicator for safety in car-following
situations (Van der Horst, 1990). TIC was calculated as follows:

Q..
TIC = BV

Here, D represents the distance between two succeeding vehicles in
a lane and Bv is the difference in speed between these vehicles.
Next, the TIC value was divided into categories of increasing criti
cality. This as particularly useful for the present purpose because
TIC is often very large indicating relatively safe and, in the present
situation, not very interesting values. Categorisation largely elimin
ates this problem. In the present experiment individual TICs,
obtained in the 1 min period that the instrumented vehicle passed
the inductive loops (see below), were averaged over lanes to obtain
a single TIC value. Categorization of these TICs was chosen on
the basis of an exponential curve which emphasises criticality in the
low TIC categories (Table I).

Table I An overview of the categorization of average TICs
in 1 min. periods.

category

1
2
3
4
5
6

TIC (s)

>60
10 - 60
3 - 10

1.5-3.0
0.6-1.5
0.0-0.6

9

One important characteristic of low TICs in low density traffic is
that these may indicate the occurrence of a lane change manoeuvre
which is usually not dangerous. In high density situations this is
usually not possible and low TICs suggest critical situations. There
fore, the average occupancy for the whole carriageway was used for
weighing the indicator as follows:

indicator = 2.8 * Oave * Tave

with Oave = average occupancy over all lanes
Tave = average TIC category in I-min period
(see Table I)

The factor 2.8 is choosen so, that an average occupancy of .35
produces a weighing factor of 1 : only in heavy traffic this value is
sometimes exceeded.
As a last step, this weighed result was divided into 7 classes of
ascending severity by simple truncation. Of course, the latter two
steps are rather arbitrary, but the main point remains: it is a cri
terion that emphasises critical behaviour (low TIC's) and moreover
increases the severity if critical behaviour takes place in denser
traffic.
This criterion is referred to as weighed localized TIC.

Passing an inductive loop takes only a part of a second. However,
secondary task performance, SAR and weighed localized TIC can
be only computed over a relatively long period of time. So, these
values were computed over a period which started before the
vehicle passed the loop and which ended some time after passing. It
was not clear how long this time should be for optimal correlations.
When the period is too short the indicator will not be stable. When
it is too long, local flow characteristics round the instrumented car
have probably changed and the measurements do not indicate the
relevant conditions properly.

10

Hence, task performance and SAR were computed for three dif
ferent periods of time, 15 s before until 15 s after passing a loop,
30 s before and after, and 60 s before and after loop passing.

Subjects
Twenty subjects partldpated, 13 males and 7 females. They had
been selected from the institute's subject pooL Subjects were not
older than 45 years of age and experienced drivers in that they had
driven at least about 10,000 km per year in the last five years.

RESULTS

Due to technical failure a large number of inductive loop measure
ments had not been logged properly. In total, only the data of three
subjects in the secondary task condition and the data of six subjects
in the control condition could be analyzed. In addition, one subject
was excluded from the control condition because this subject had
served only at low weighed localized TIC levels. The analyses in
volved computation of weighed localized TICs while passing each
of the 16 inductive loops on a single drive. Average secondary task
performance and speed were computed for each loop passage in the
secondary task condition. Likewise, average SAR and speed were
computed for loop passages in the control condition. The resulting
number of observations are presented in Table H. These analyses
were carried out for periods of three different durations, 15 s before
and after passing an inductive loop, 30 s before and after, and 60 s
before and after loop passage.

Table H

condition

control
sec. task

Number of observations as a function of weighed lo
calized TIC and condition.

subjects

5
3

I

211
113

weighed localized TIC

2

109
52

3

27
10

456

805
200

Control condition
Average SAR and speed were computed as a function of weighed
iocalized TIC. The results are shown in Table III The results show
a clear SAR increase and speed decrease with increasing weIghed

1

localized TICs. It should be noted, however, that the five observa
tions associated with level six on the weighed localized TIC come
from one subject only. A weighed localized TIC x subject ANOVA
with the first four levels, including five subjects, showed no sig
nificance at the four weighed localized TIC levels (±15 s:
F(3,12)=O.8; ±30 s: F(3,12)=1.4; ±60 s: F(3,12)=1.8, all ps>. 19].
Table IV presents pairwise correlations between weighed localized
TIC, SAR and speed on all levels.

Table ill SAR (lIs) and speed (km/h) as a function of weighed
localized TIC for five subjects.

period 1
weighed localized TIC
234

SAR ±15 0.86 0.86 0.91 0.98

1.11
±30 0.85 0.86 0.86 0.96
1.01
±60 0.84 0.86 0.84 0.86
1.06

speed ±15 87.5 85.9 73.7 64.7

37.5
±30 87.2 85.6 72.5 65.8
36.3
±60 87.2 85.2 71.0 64.7
37.6

Table IV Correlations between weighed localized TIC

56

(WL TIC), SAR and speed on data from five subjects
on WL TIC level 1 to 6.

WLTIC-SAR WL TIC-speed SAR-
speed

±l5 .12· -.44**· .16--
±30 .10 -.46"· .15**
±60 .11* -.50"· .15··

note: • p<.05, •• p<.Ol, *** p<.OOI

12

Secondary task condition
Despite the low number of observations in this condition with only
three subjects, an attempt was made to analyze performance on the
secondary task and speed as a function of weighed localized TIC.
Table V shows secondary task performance and speed as function
of weighed localized TIC. Weighed localized TIC x subject
ANOV As showed no significant effect of weighed localized TIC
on secondary task performance [±15 s: F(3,6)=1.7, p>.20; ±30 s:
F(3,6)=13.6, p=.05; ±60 s: F(3,6)=1.5, p>.20]. So, only with the
±30 s interval a marginally significant effect of weighed localized
TIC on secondary task performance was found which indicated that
secondary task performance increased with increasing weighed lo
calized TIC and, hence, visual workload of driving decreased with
increasing weighed localized TIC. This was unexpected. Table VI
presents correlations between weighed localized TIC, secondary
task performance and speed. It confrrms the unexpected secondary
task performance increase as WL TIC increased. Table VI also
shows that speed did not correlate with weighed localized TIC and
that performance increased as speed decreased, which was expected.

Table V

period

perf. ±15
±30
±60

Secondary task performance (% correct) and speed
(km/h) as a function of weighed localized TIC for
three subjects.

1

69.6
70.0
70.5

weighed localized TIC
234

81.0 71.7 83.3
79.3 81.6 85.7
78.2 71.5 80.5

56

speed ±lS

±30
±60

Table VI

speed

±15
±30
±60

83.6 83.8 78.5 88.6
83.3 83.6 79.3 90.6
82.4 83.7 79.1 88.7

Correlations between weighed localized TIC
(WL TIC), secondary task performance and speed on
data from three subjects on WL TCC level 1 to 4.

WL TIC-perf. WL TIC-speed perf.-

-.03 -.2S*'·
-.01 -.23'·
.02 -.13

note: • p<.05, •• p<.01, ••• p<.OO 1

13

DISCUSSION

The aim of this study was to find whether visual workload increases
as a function of a criterion that might indicate unsafety, the weighed
localized TIC. Unfortunately, more than half of the inductive loop
data was lost because damaged registration tapes. An attempt to
analyze the remaining data was further troubled by the fact that
there were virtually no observations at the higher levels of weighed
localized TIC. On the six point scale of the weighed localized
TIC, there were only 15 observations at levels 4 to 6.

In the control condition, where data from six out of ten subjects
was available, Steering Activity Rate (SAR) served as indicator for
visual workload. SAR increased with weighed localized TIC but in
an ANOV A this did not reach significance. The correlation was
highest with a period of 15 s before and after passing an inductive
loop but remained quite modest. As expected, average speed
decreased with increasing weighed localized TIC. This suggests
that the currently used categorization by weighed localized TIC
may be a good indicator for task load. However, these correlations
are to some extent caused by the data from only one subject who
drove in category 6. Therefore the data at level 6 were not included
in the ANOV A which showed no significant effect of weighed lo
calized TIC on SAR.

Unfortunately, in the visual secondary task condition the data from
only three subjects were available. These data showed no significant
relation between speed and weighed localized TIC. This was unex
pected. Bearing in mind that speed did decrease in the control con
dition this suggests that the speed increase in the secondary task
condition was due to the limited number of observations. No cor
relation was found in the expected direction which could be at
tributed to increasing visual load with increasing weighed localized
TIC. So, the very limited number of observations in this condition
does not justify any conclusion on the relation between weighed
localized TIC and visual workload.

Together, the limited number of observations precludes any firm
conclusions. The data do not show whether visual workload in
creases with weighed localized TIC and even suggest a reversed
relation which can be attributed to the limited number of observa
tions. As expected, SAR appeared to increase with increasing
weighed localized TIC but the number of observations in category
5 and 6 was too small to allow proper testing. The data do not al
low conclusions for the optimal period over which SAR and perfor
mance on the secondary task should be assessed.

14

Given that with six out of the original ten subjects in the control
condition only 13 observations in categories 4-6 were found, this
suggests that, even without data loss, the number of observations in
these categories would have been limited. That this was caused by
the rare occurrence of near-congested traffic and not because
weighed localized TIC was invalid, is indicated by the infrequent
observations of low driving speeds and the subjective estimates of
congestion by the experimenter. This suggests that either the time of
experimenting, which took largely place in June, or the route, were
not appropriate for this experiment. Possibly, derivation of the in
strumented car's own TIC from the video tapes that were made
during the present experiment may be used for finding a relation
between SAR and task performance with a TIC related measure.
Yet, the rare occurrence of congestion makes the usefulness of such
an enterprise doubtful.

For future research the rare occurrence of critical situations as indi
cated by weighed localized TIC implies that one should better in
vestigate the relation between visual workload and conditions in the
traffic stream in a driving simulator first. This gives proper ex
perimental control over the conditions in the traffic stream by mak
ing traffic stream conditions an independent rather than a dependent
variable. This also reduces the problem that local TIC values in the
area round the subject's car are hard to relate to the subject's work
load because these TICs are registered by a loop at a fixed location
whereas workload is registered in the moving car. Instead, in a
simulator one can precisely and continuously measure local TICs
around the subjects' car. The only precondition is that proper
modelling will yield processes in the traffic stream that are compar
able to those in the real world. Data required for such modelling
can be easily obtained from the loop data assessed in the present
study. If and when a valid criterion has been found for driver work
load that can be extracted from loop data, such as the presently
used weighed localized TIC, the present study may be repeated in
actual freeway driving.

15

REFERENCES

Antin, J.P', Dingus, T.A., Hulse, M.C., & Wierwille, W.W. (1990).
An evaluation of the effectiveness and efficiency of an auto
mobile moving-map navigational display. Int. Journal of
Man-Machine studies, 33, 581-594.

Brown, 1.0., Tickner, A.H., & Simmonds, D.C.V. (1969). Inter
ference between concurrent tasks of driving and telephoning.
Journal of Applied Psychology, 53, 419-424.

Harms, L. (1986). Drivers' attentional responses to environmental
variations: A dual-task real traffic study. In A.G. Gale, M.H.
Freeman, C.M. Haslegrave, P. Smith, S.P. Taylor (eds),
Vision in Vehicles (pp. 131-138). Amsterdam:
North-Holland.

Harms, L. (1991). Experimental studies of variations in cognitive
load and driving speed in traffic and in driving simulation.
In A.G. Gale, 1.0. Brown, C.M. Haslegrave, I. Moorhead, &
S. Taylor (eds), Vision in Vehicles III (pp. 71-78). Amster
dam: North-Holland.

Horst, A.R.A. van der (1990). A time-based analysis of road user
behaviour in normal and critical encounters. Unpublished
doctoral dissertation. Soesterberg, the Netherlands: TNO In
stitute for Perception/Human Factors.

Horst, R. Van der, & Godthelp, H. (1989). Measuring road user be
havior with an instrumented car and outside-the-vehicle vid
eo observation technique. Transportation Research Record,
1213, 72-81.

MacDonald, W.A., & Hoffman, E.R. (1980). Review of relation
ships between steering wheel reversal rate and driving task
demand. Human Factors, 22, 733-739.

Parkes, A. (1989). Changes in driver behavior due to two modes of
route guidance information presentation: A multi-level ap
proach. Loughborough: HUSAT Research Centre.

Rumar, K. (1986). In-vehicle information systems. Int. J. of Vehicle
Design, 9, 557-564.

Sussman, E.D., Bishop, H., Madnick, B., & Waiter, R. (1985).
Driver inattention and highway safety. Transportation
Research Record, 1047, 40-48.

16

Taylor, D.H. (1964). Drivers' galvanic skin response and the risk of
accident. Ergonomics, 7, 439-451.

Treat, 1.R., Tumbas, N.S., McDonald S.T. et al. (1979). Tri-level
study of the causes of traffic accidents: Final report U.S.
DOT HS-805-086, (NTIS PB 80-121064).

Verwey, W.B. (1991). Adaptive interfaces based on driver resource
demands. In F. Queinnec and F Daniellou (Eds.), Designing
for Everyone and Everybody. Proceedings of the 11th Con
gress of the International Ergonomics Association (Vol. II,
pp. 1541-1544). London: Tay10r and Francis.

Verwey, W.B. (1993a). How can we prevent overload of the driver?
In A.M. Parkes and S. Franzen (eds), Driving future vehicles
(pp. 235-244). London: Taylor & Francis.

Verwey, W.B. (1993b). Driver workload as a function of road situa
tion, age, traffic density, and route familiarity. (Report IZF
1993 C-ll). Soesterberg, the Netherlands: TNO Institute for
Human Factors.

Verwey, W.B. (l993c). First test of man-machine interface adapta
tion to driving situation. (Report IZF 1993 C-44).
Soesterberg, the Netherlands: TNO Institute for Human Fac
tors.

Verwey, W.B., & Janssen, W.H. (1989). Route following and driver
performance with in-car route guidance systems. Proceedings
of the INRETSNTI congress "Road safety in Europe"
(pp. 81-97). Gothenburg, Sweden: VTI.

Wickens, e.D. (1984). Engineering Psychology and Human Perfor
mance. Columbus: Merrill.

Wiersma, lW.F., & Heijer, T. (1993). Dynamic aspects of motor
way traffic safety. In J.L. de Kroes & J.A. Stoop, Proceed
ings of the First World Congress on Safety of Transportation
(pp. 76-86). Delft, The Netherlands: Delft University Press.

Wierwille, W.W., & Guttman, le. (1978). Comparison of primary
and secondary task measures as a function of simulated
vehicle dynamics and driving conditions. Human Factors, 20,
233-244.

A Traffic Model based upon Neural Networks

C.M. Gundy & T. Heijer
Leidschendam, 1994
sway Institute for Road Safety Research, The Netherlands

sway Institute for Road Safety Research
P,O, Box 170
2260 AD Leidschendam
The Netherlands
Telephone 31703209323
Telefax 31703201261

1.0 INTRODUCTION ,......... ,

2.0 GENERAL ORIENTATION ON ARTIFICIAL NEURAL
NETWORKS

2.1 What is a Artificial Neural Network?
2.2 A Short History
2.3 Linear Separability
2.4 Back Propagation
2.4.1 The Algorithm
2.4.2 Limitations of Back Propagation

3.0 THE APPLICATION OF A NEURAL NETWORK TO

3
6
7
9

10
13

TRAFFIC FLOW DATA 15
3.1 The problem 15
3.2 The Data. .. 15
3.3 Model Characteristics and Architecture 17
3.4 Model Fits .. 21
3.5 Comparison to a Linear Model 21

4.0 DISCUSSION AND CONCLUSIONS 23

LITERATURE 25

3

i.O iNTRODUCTION

The research reported here is a part of a much larger project aimed at the
development of a comprehensive control strategy for traffic on a freeway
network. This larger project roughly consists of three parts:

a) development of an ".,." .;ignment model" which predicts traffic flow
intensity in all parts of the network as a function of time and place and
30-60 minutes ahead in time : this model will be used as a basis for
redirection, general traffic information and adaptation of lower level traffic
controllers.

b) development of an adaptive control strategy for speed and density in
the network: to tillS end the network is divided into small "subsystems"
(limited stretches of road with 1-6 on- and off-ramps) in which separate
controllers operate; these controllers are coordinated by intermediate level
coordinators to ensure consistency within the network. FurthernlOre, these
controllers adapt their set-points according to predictions generated by the
assignment model of part a).

c) the development of a "safety module". This module will be present in
each subsystem and have several functions:

and

continuous evaluation of the < "cty of the local traffic stream; the
results will also be used to muJify the settings of the control
system as developed in b),
implementation of special measures: often the more generalized
control of average speed and density do not suffice to stabilize
certain behaviour and more dedicated feedback will be called
for: these modules will also contain a repertoire of these mess
ages/measures,

incident detection and handling.

Artificial neural networks seem to be a promising, new tool for applica
tion in diverse aspects of these three of these parts. For this reason, the
following section of this report concerns a general orientation on artificial
neural networks, intended for those readers not yet familiar with this tech
nology.

The second main section concerns a specific application of neural net
works, which addresses a portion of the research involved with part b)
mentioned above. Namely, having developed a model for an adaptive
control strategy, one needs to test it before actual implementation. Due to
the a..<;sociated costs, one would like to test it in the laboratory before
moving to real-world tests. One form of laboratory testing would involve
the use of simulations of traffic flow patterns. We therefore need a com
puter model to simulate traffic flow characteristics. There are many ways
to achieve this, some being simple, others being more complex and time
consuming.

Neural network models were chosen to implement such a simulation, and
for a number of reasons:

In the first place, while rather time-consuming in implementation, their
actual execution (one the model is fit) is relatively fast. Secondly, it was

2

decided not to use a linear model for the simulated traffic model, because
it was deemed likely that a linear model would be involved in the adapt
ive control strategy. This would result in a linear model controlling a
linear model, which would not seem to be a sufficiently robust test of the
adaptive control model. Third of all, it is well known that neural net
works are capable of modelling non-linear relations (which do not have to

be specitied before-hand). Thus it seemed possible that a neural net-
work could actually be more robust model of the traffic process itself.

Therefore, the second main section of this report considers the results of a
neural network modelling of traftic flow characteristics.

2.0 GENERAL ORIENTATION ON ARTIFICIAL NEURAL NETIVORKS J

Artificial Neural Networks, to distinguish them from the real thing, are
interesting mathematical models which have created a great deal of
enthusiasm (some say even a "paradigm shift") in recent years.

Their abilities are extensive. They are able, for example, to learn
arbitrarily complex input-output relations, to adapt to changmg enVIron
ments, to abstract classes of stimuli, to make 'best guesses' about missing
data, and to find 'reasonable' solutions to complex, non-linear problems
with a large number of constraints. They are able to generalize to new
situations on the basis of known ones, are tolerant of noise and ambiguity,
and demonstrate 'graceful' degradation, instead of catastrophic failure,
when damaged.

Artificial neural networks (hereafter ANNs) can be viewed from a number
of perspectives.
They can, of course, be seen as interesting objects in themselves, lying
somewhere between (applied) mathematics and (theoretical) engineering.
One can study the properties of certain networks, or build a network to
demonstrate that it can do something interesting.
ANNs can also be viewed as models of something else, primarily useful
in understanding how a certain phenomenon works. Academic psychol
ogy is, for example, quite busy building ANN models of memory, learn
ing, perception, and attention. While there is still a great deal of contro
versy (and confusion), one can safely say that ANN modelling has had a
major impact on contemporary thinking about psychological functions.
A third, and more mundane, viewpoint is that ANNs are also simply
mathematical tools that one can use to get a job done. The only question
in this case is whether the tool is appropriate for the task. For the rest,
one could view the tool as a black box. (One does not have to understand
physics in order to use a television set.)

In the present case, we are primarily interested in this third, practical,
viewpoint. We are interested here in predicting characteristics of traffic
flow on highways. We do not want to imply that somehow traffic Hows

IThis chapter is intended to be an introduction, limited to the knowledge specifically
needed for understanding the present application. As such, it is neither complete nor are
the ideas presented here original for the present authors. The interested reader is referred
to the sources mentioned in the bibliography.

3

could be better understood by studying the workings of brains, artificial or
otherwise.

In the following sections, we will first describe the components and char
acteristics of ANNs in general. Secondly, we will briefly consider the
historical development of a specific class of ANNs, namely 'feed forward'
models. In a third, and fmal section, we will consider a specific
algorithm, back propagation', and enumerate its' potential strengths and
weaknesses for the present application.

2.1 What is a Artificial Neural Network?

There are probably (tens ot) dozens of classes of ANNs, each class pos
sessing one or more variants. More are being invented each day.
Consider the following (incomplete) list:

-(Multiple) ADaptive LInear NEuron (MADALINE);
-Adaptive Resonance Theory (ART);
-Back-Propagation (Backprop);
-Bi-directional Associative Memory (BAM);
-Boltzmarm Machine;
-Brain-State-in-a-Box (BSB);
-Cascade Correlation;
-Categorization And Learning Module (CALM);
-Counter-Propagation;
-Digital Neural Network Architecture (DNNA);
-Directed Random Search (DRS);
-Functional Link Networks (FLN);
-Hamming Networks;
-Hopfield Networks;
-Learning Vector Quantization (LVQ);
-Perceptrons;
-Probabilistic Neural Networks (PNN);
-Recirculation Networks;
-Self Organizing Maps (SOM);
-Spatio-Temporal pattern Recognition.

Each class probably has hundreds or thousands of actual implementations,
each of which is more or less unique. In fact, each implementation can
have multiple solutions.

What do all of these things have in common? What are the basic ANN
building blocks?

First of all, every ANN that ever existed is built up out of nodes and
connections. We can roughly view each node as representing a variable.
Nodes associated with input are called 'input' nodes, those associated with
output are called 'output' nodes, and those associated with nothing in
particular are called 'hidden' nodes. We could perhaps view a hidden
node as representing the analogue of a latent variable or a principal com
ponent. Each node has, at a particular moment in time, an activation,
which we will return to in a moment.
Nodes are attached to each other by means of connections. (Hence the

4

term connectionism.) Connections between two nodes may be uni-, bi- or
non-directional, or even be non-existent. Each existing connection has a
weight, or value, which may be tIxed, variable, or somehow limited in the
values that it can take. For example, bi-directional connections may have
equal weights for each direction, may be restricted to be greater than or
equal to zero, or may have a freely varying weight for each direction.

Each node acquires an activation, which is either directly given by the
user (if the node is an input node), or is some function of the activatlOns
of the nodes connected to it, and the weights associated with those con
nections. This function is called the transfer function.
A very simple example is the weighted sum, or:

In words, the activation of node i is equal to the sum of tl1e activations of
nodes j, weighted by their connection to node i.

More commonly, however, a non-linear transformation, such as the logis
tic or hyperbolic tangent, is first applied to this weighted sum. Of course,
many different transfer functions can be, and are, applied.

Once the activation of node i is calculated, then this value can then be
passed on to the other nodes that node i is connected to.2

Activations can change very rapidly, either on demand by the user, or a..<; a
function of other rapidly changing activations. Weights, on the other
hand, either do not change at all or change more slowly. Fixed, or 'hard
wired', weights do not learn. This is useful in some applications, such as
constraint satisfaction, yet the actual choice of these fixed weights deter
mines whether the application will be useful.
(Slowly) changing weights, however, can represent learning. (In this way,
one can say that the knowledge is in the weights.) The method used for
changing weights, or the learning rule, is clearly crucial for determining
what a network can or cannot do. An example of a simple learning rule
is that when two nodes have the same activation the corresponding weight
should be increased; when they differ the corresponding weight should be
decreased. Other learning rules, error-based learning and competitive
learning, are more complex.

Finally, an ANN has an overall structure, or architecture. Once we specify
how many nodes there are, what each node's transfer function is (they
don't all have to be the same), what connections exist between the nodes
(and the world), and which restrictions and which learning rule (if any)
apply to each connection, then we have an instantiation of one of the
above mentioned classes of neural networks. If we furthermore specify a

2The astute reader may note that this can lead to certain problems. Namely, if nodes 1

and j and connected, and we can only update the activation of one node at a time, because
our computer is a serial machine, then which node is updated first? There are a number
of ways of solving or avoiding this problem, yet they will not concern us further here.
This problem, however, doesn't arise in feed-forward networks, where activation is propa
gated from input nodes forward towards hidden nodes and then onto the output nodes.

5

number of parameters, such (1<; how fast the network should learn, then we
only have to connect it to the world (by making input available).

Summarizing, an ANN can be viewed as a complex (non-linear) system of
nodes (or variables) and (numerical) relations between those nodes. By
means of a set of updating rules, the activations of the nodes and/or
weights are altered so as to minimize some function. This function may
be explicit: for example, it could be the sum of squares of differences
between actual and desired output. It may also be quite implicit, reflect
ing only some researcher's notion as to how he wants his system to
behave.
All neural networks are basically variations on this theme.

6

2.2 A Short History

The origin of neural network research has two main roots. dating from the
1940's. One root originated from the work of McCulloch and Pitts. two
mathematicians who showed that neural nets could be programmed to
perform any arbitrary logical function. (This work later founded the basiS
for the modem computer.) Unfortw1ately, these networks did not learn: a
human had to program themo In other words, they showed that networks
useful could be built, they only failed to provide an algorithm for doing
so.
The other root originated from the work of D. Hebb, a psychologist who
was interested in models of how real neurons interacted and could leam.
Many of Hebb's ideas, such as correlational learning (see previous sec
tion), can still be found today in current research.

Between the mid 1950's and 1970's, neural net research can be generally
divided into three major classes reflecting the type of learning rules used,
and the purposes for which they are well adapted. One cla...;;s emphasizes
competitive learning which attempt to divide the input space into sub
regions. This class is well-suited for e.g. classification ta...;;ks where there
is no a priori sub-divisions. Another general class emphasizes correlation
learning which attempts to abstract statistical generalities from input
space. This class is well-SUited for cleaning up noisy data or makmg
guesses about missing data. A third class emphasizes learning by compar
ing its output signal with an externally defined criterion, and computing
the error. This class is particulary useful when we have a set of predictors
and a set of to-be-predicted variables, but we don't know to relate the one
to the other.

This last problem is essentially the one that we have at hand here: we
want to predict traffic flow characteristics at a certain time and place,
based on data from another time and place.
For this reason, we will henceforth neglect developments in the first two
classes just mentioned3

•

A major breakthrough in learning neural networks was made by
Rosenblatt in the late 1950's with the development of the Perceptron".
This model was originally developed with optical pattern recognition in
mind. This network was noise tolerant, could make limited generaliz
ations, and was capable of re-learning even after part of the network was
ablated.

The idea was that an object (in the visual field) activated a pattern in an
array of sensors. Each sensor was randomly connected to a number of
associator units. or 'feature demons'. If the weighted sum of input to a
specific demon exceeded a certain threshold, then the demon fired and
passed its activation to a final layer of perceptrons. The perceptron layer

3 Actually, there is a fourth class of models, derived from statistical mechanics. This
models are, however, of even later origin, and not directly relevant for our present prob
lem.

"Widrow and Hoff developed similar models in the early 1960's.

7

compared the weighted sum of its' inputs to an (externally supplied)
vector of desired output. The weights connecting the demon with the
perceptron layers were modifiable, Le., they could learn, and then in the
following manner.
If the output of a perceptron and the desired output were identical,
then the weights were left unaltered. If the perceptron output was larger
than the desired output then the weights on all active input lines should be
decreased. Otherwise, they should be decreased. The amount of decrease
or increase is based on the size of the difference between actual and
desired output: roughly, small errors should lead to small changes and
vice versa.
Rosenblatt demonstrated that for a given set of inputs and desired outputs,
then the perceptron would learn the correct set of weights for accomplish
ing this, if that sets of weights existed.

However, that is the problem! Namely, Minsky and Papert demonstrated
in the late 1960's that no such set of weights existed for a single layer of
perceptrons for a important group of problems. This set of problems,
which we will return to later, did admit to a solution in a system with
several layers of perceptrons, but no one knew how to train the inter
mediate layers. These intermediate layers had no desired output to be
compared to, and thus, no error.

Minsky and Papert's work convinced a lot of people that perceptrons were
only useful for simple, uninteresting problems, and the whole field of
research languished. One could say that the (somewhat premature) death
knell of the perceptron diverted interest towards the symbolic information
processing paradigm, which still dominates artificial intelligence and cog
nitive psychology. However, a number of researchers, e.g., Grossberg,
Anderson, and Kohonen, did continue their work through the 1970's, and
provided a basis for present day developments.

2.3 Linear Separability

As mentioned in the previous section, there is a class of problem that a
one-layer perceptron cannot solve; namely, problems whose solution
regions are not linearly separable.

To understand this, consider the following example.

Skipping the input buffer level, assume that we have two feature
'demons', both of which can assume one of two values, either 'on' or
'off'. These two demons are linked to a single, binary-valued perceptron.
These links can take on any value. The question is then: which input
output relations is the perceptron capable of representing?

The answer is simple. Since the input to the perceptron is the weighted
sum of two input variables, which is equivalent to drawing a line in the
two-dimensional input space, the perceptron can only learn distinctions
which can be made by drawing a line through that input space.
This result is generalizable to situations with more input dimensions, in
which we can speak of planes or even hyper-planes, and situations with
more output dimensions, in which we can speak of multiple planes or
multiple hyper-planes. And, of course, this generalization is not limited to

8

binary input/output variables.

Are there problems whose solution space is not linearly separable? Con
sider Figure I, which is a geometric representation of the four possible
combinations of values that two binary variable can take.

AND OR

(0,1) (1, 1)

(0,0) (1,0) (1,0)

Afbeelding 1

If we consider the logical AND function, for which the output is equal to
one if and only if both input variables are equal to one, then it is easy to
draw a line separating the point' 11' from the other three points COO',
'01', and '10'). This is also possible for other functions, such as the
logical OR. If however, we consider the logical function EXCLUSIVE
OR, for which the output is equal to one if and only if one and only one
of the input variables is on, then we cannot draw a straight line separating
'10' and '01' from' 11' and '00'. This problem is therefore not linearly
separable.

There are generally two ways of solving this (and other similar) problems.

The first solution is to pre-process the input data so that possible combi
nations of input data values are already included in the input layer. Some
researchers advocate this approach, primarily due to its' learning speed.
However, the number of combinations of variables grows much faster than
the number of variables, and this approach can easily result in an immense
amount of computation. Secondly it transfer the burden of learning the
appropriate combinations from the computer algorithm to the insight (and
good luck) of the researcher.

The second approach is to create multi-level networks, with hidden or
auxiliary variables, and let the network find the appropriate transfonn
ations. However, as we mentioned above, no one knew to train multi
layer networks. This problem was independently solved a number of
times, yet McClelland and Rumelhart, two psychologists, popularized the
technique during the mid 1980's. Their algorithm was called Back Propa
gation or Back Prop.

9

2.4 Back Propagation

Back Propagation is a mUlti-purpose algorithm for training multi-layer
networks. It has been shown that Back Prop is capable of fitting any
arbitrary input-output relation, if the network has enough hidden nodes
and enough hidden layers. This statement reveals three types of problems.

Concerning the number of layers, it has been shown that one layer (of
trainable weights) is enough for any linear separable problem, two layers
are enough for any problem which requires dividing the into space input
convex regions, and three layers are enough for any other problem.

Concerning capabilities, back propagation is capable of learning an
adequate solution, but this IS no guarantee that it will learn an adequate
solution. Back propagation uses an approximation of gradient descent,
and may become trapped in a local minimum.
The algorithm attempts to find a combination of weights such that the
sum of the squares of error (the difference between desired and actual
output) is as small as possible. Each combination of weight values has,
therefore, an associated sum of squares of error. This can be visualized
by assuming that each weight corresponds to a combination of longitude
and latitude, and the sum of squares of error correspond to elevation.
(With more weights, the problem becomes multi-dimensional, and a
simple visualization is not possible.) The algorithm is randomly
initialized, or blindly parachuted onto the error landscape, so to speak.
Its' task is to fmd the deepest valley (or smallest sum of squares of error)
without the aid of a map and in a dense fog, a rather daunting task. It
proceeds by determining the direction with the steepest decline, and takes
a step in that direction. It is clear that this approach does not guarantee
finding the deepest valley, only 1! valley. Another 'parachute drop' (c.q.
random initialization) could lead to better results.
McClelland and Rumelhart, aware of the potential problem, remark that,
with enough 'hidden' nodes, this is rarely a severe practical problem.

Concerning the number of hidden nodes needed, the choice is more of an
art than a science. One could conceivably have more hidden nodes than
input/output pairs, in which finding a 'good' solution is rather trivial.
(Namely, there are more free parameters than degrees of freedom.) Too
few nodes and the errors will be unacceptably large.
This issue is especially thorny, and simultaneously reflects one of the
strengths and weaknesses of the procedure. Namely, the representation of
the problem space is distributed over the hidden nodes, i.e., a hidden node
simultaneously reflects multiple aspects of the same problem. In addition,
there is no a priori reason which prevents two nodes from doing exactly
the same thing. Fully connected back prop networks are therefore neither
easily interpretable nor necessarily parsimonious. On the other hand, this
same characteristic enables them to be noise tolerant and to suffer ablation
with 'graceful degradation'.
We can therefore only offer the advice to use as few hidden nodes as one
can get away with for a specific problem.

10

2.4.1 The Algorithm5

We have already mentioned that back propagation uses a form of gradient
descent for training multi-level networks, previously a problem with no
known solution. A crucial insight into solving tins problem was that
each node has to perform a non-linear transform on its input (the weighted
sum of outputs of nodes in lower layers). This is because a linear traI1S
form of a linear transform remains linear, and tile linear separability bar
rier cannot be breached. Secondly, t1lis non-linear transform had to be
(easily) differentiable. A suitable candidate for tile position seemed to be
the logistic (or s-curved) function.

In tile following we will first derive tile learning rule, and tilen step
tllfough tile algoritl1m.

First, defme tile following:

(la; Ib)

where 0pi is tile output of node i for pattern p;
wji is tile weight from node i to node j;
ne~j is tile net activation of node j for pattern p;

and f refers to some function.

If f refers to tile logistic function, tilen its' derivative r is:

ff = fl..1-j)

Furtilermore, defme tile following:

~PI ,:

(2)

(3)

Now, suppose tilat we want to minimize tile (sum of squares of) error for
pattern p, or:

(4)

where Ep
refers to tile sum of squares of error for pattern p;

~j refers to tile desired, or target, output, witil tile subscripts as
above.

(Note: We have not included any weights in t1lis last equation, wllich is
equivalent to assuming tilat all output variables are equally important.
This does not always have to be tile case, and weights may be included if

5The reader may skip this section without loss of continuity.

II

necessary.)

In order to alter weights so as to minimize the error, we have to differen
tiate E with respect to those weights. Using the chain rule:

(5)

The first factor on the right hand side has already been defined above (3).
The second factor is:

anetpj
a

= LA: WjA: 0pA:

awft awft (6)

= Opt

Therefore,

(7)

and our weight changes should be proportional to this value, or:

(8)

which is called the delta rule. It is the value of 0 that we have to derive.

There are two cases: for output units, and for hidden units.

In the first case we will apply the chain rule to the definition (3) above:

(9)

From the definition above (1), we also see that:

aoP." I ~ = f (net;
anetpj

(10)

Differentiating our error function (4), we also see that:

(11)

Substituting into (9), we find:

12

(12)

for output unit j.

In the second case, we are concerned with the hidden unit, again with a
subscript j. Here we have to apply the chain rule again:

aEp
= Lk

aEp anetpk
aopj anetpk oopj

= Lk
aEp aLl Wkj 0pi

anetpk aop1

= Lt
aEp (13) --w

anet IrJ
pk

= -Lk ~pk wlrJ

Substituting back in again,

(14)

when the subscript j refers to a hidden unit.

The algorithm works as follows:

0) Select learning parameters and initialize all weights.
1) Present a (pattern) vector to the input layer.
2) For each hidden layer node, weight each incoming input value and
calculate the sum.
3) For each hidden layer node, transform this weighted sum by a logistic
function, and output this value to the next layer.
4) Repeat 2) and 3) for each hidden layer.
5) For each output layer node, calculate the weighted sum of the incoming
input values, and apply a logistic transform. This transformed valued
is the actual output.
6) Compute the difference between the actual output and the desired out
put for each node, and multiply this by the derivative.
7) Update the last hidden layer to output layer weights, on the basis of the

values calculated in 6).
8) Take the values calculated in 6), multiply them by the weights updated
in 7), and take the sum. Multiply this sum by the derivative for each
hidden layer node.
9) Take the value calculated in 8), and update the weights to this hidden
layer on the basis of this.
10) Repeat 8) and 9) for each additional hidden layer.

13

11) Go to 1, and repeat until all patterns have been presented.
12) Calculate the total sum of squares of error (between desired and actual

output). If this value is 'suffIciently' small. then stop. Otherwise,
go to 1.

It should be noted that there are many variations on this basic algorithm
(and the accompanying mathematics). For example:

-Patterns may be randomly sampled (without replacement) for each pass
through the data set or they may presented in the same sequential order.
-Weight updates may be done after each pattern (as above), or they may
be done after the entire data set has been presented. This last
'batch' method usually gives smoother convergence.
-Functions (with derivatives) other than the logistic one may be used.
-Different learning parameters may be used for each layer. In addition,
learning schedules may be selected, so that the rate of learning changes as
a function of the number of examples presented.
-The basic algorithm may be augmented with additional features intended
to speed up learning. These additional features, for example, may
take the rate of weight changes into consideration in order to adjust learn-
ing parameters for individual nodes.
etc.

2.4.2 Limitations of Back Propagation

As we have seen in previous section, back propagation is a powerful
teclmique for mapping complex input-output relations. A major theoreti
cal limitation is that it can become trapped in local minima. Another
diffIculty is that it may require a great deal of work to understand what a
network solution is actually doing, something which may require the use
of multivariate techniques.

In this section we will discuss a number of other practical problems.

Learning is slow and uncertain. For example, the solution of the exclus
ive OR problem mentioned above is well understood. However, the stan
dard algorithm may require several hundred passes through the data set
before any real learning becomes apparent. If one quits too soon, then the
incorrect conclusions may be drawn. This problem is exacerbated with
large data sets, with many thousand of observations and (tens of) dozens
of variables, especially when we don't know that a better solution is poss
ible. One could conceivably spend months of fruitless computing.
Special computational speed-up features alleviate this problem somewhat,
but do not solve it6

•

In addition, many researchers have found that alternative architectures
and/or learning schedules (or whatever) sometimes achieve better results.
(One rule of thumb is that if learning has reached a plateau, then decrease
the learning parameters.) Systematically searching the entire parameter
space is computationally prohibitive (even though some researchers utilize
genetic algorithms towards this end). We could conclude tllat at least
some aspects of tltting neural networks is more of an art than a science.

6It should be noted, however, that once the network has learned satisfactorily, and
only prediction is required, computation is very fast.

14

In addition to the gnawing uncertainty just mentioned, back propagation
exhibits a somewhat more fundamental difficulty: it can not only learn,
but it can also forget, and even 'catastrophically' so. For example, if we
first train a network to perfection on data set A, then train it on data set
B, and then test what it knows about data set A, then we find that there is
not only evidence of retroactive interference, but that it seems to have
forgotten almost everytlu.?lg about the first data set. Adding additional
nodes, or implementing exotic learning parameter schedules do not allevi
ate the problem. A number of 'tricks' have been discovered, yet the
sequencing of training examples is crucial, especially if the world is non
stationary.

This last point cannot be emphasized enough. Everyone realizes that it
would be foolhardy to assume that a network trained on a congested,
urban highway could be directly applied to a sparsely populated, rural
section of the same road. (We would, however, be quite pleased if this
turned out to be the case.) It is not as obvious. but nevertheless equally
dangerous to assume that a back propagation network trained on a gIven
situation will always retain its' knowledge of that situation after further
training on other situations.

These last two points, slow learning and catastrophic forgetting, make it
imperative that training be carefully supervised and continuously evalu
ated. Although this is not the point of the present study, carefully formu
lated guidelines have to be set up.

15

3.0 THE APPUCATION OF A NEURAL NETWORK TO TRAFFIC FLOW
DATA

In this chapter we will first briefly discuss the problem to be solved and
the data set(s) used. We will then discuss the network architecture chosen
and it's variants. Finally, we will describe the results.

3.1 The problem

Fundamentally, the local control system will be designed to keep two
major traffic paranleters, average speed and average density, within certain
stable limits. The design is based upon modem control theory and
employs a state-space description of the traffic process as a reference
model. During the design, this control strategy will frequently need testing
and calibration against circumstances that are as realistic as possible. Since
full scale experimentation is hazardous, we must rely on computer simula
tion techniques and to that end we need a computer program to emulate
traffic behaviour sufficiently reliably. Since we gathered a large amount of
relatively detailed traffic data in a previous stage of the project, it was
decided to try and use these data as a basis to develop this computer pro
gram. The choice of neural networks as a modelling tool to that end was
based on the following considerations:
- the method allows a large variety of data and rather different forms of
representation (metric as well as nominal) to be used simultaneously in a
single model which is decidedly advantageous in the representation of
traffic phenomena.
- the method requires only a minimum of structural preconceptions for
such a model: in this sense it may rapidly produce a workable" black box"
model. Unfortunately, the nature of the fitted model is often opaque to the
modeller, and requires extra analyses to understand exactly how the model
is representing the data.
- once a model has been "fit", the resulting computer code is relatively
simple and executes fast, which greatly enhances the speed of the emula
tion of the complete control-system; this contrary to other, more "causal",
models that require considerably more computing time due to their
iterative nature.

The nature of the data used by this model derives from the requirements
of the control system itself: all systems that are proposed in literature
employ averaged data about speed and density in which the period over
which the averaging takes place and the location (per lane or all lanes
together) varies between authors and applications. Anyway, the averaging
period should not be so long that major changes in the parameters are
suppressed, therefore in practice these periods vary between 30 seconds
and 15 minutes. In our case, the averaging period and the location is
chosen in such away, that all kinds of wishes in this respect can be
accommodated: we use an averaging period of 30 seconds, which is the
shortest period found in practice and averaging per lane, which always
allows aggregation if necessary.

3.2 The Data

For our modelling attempts, we used data obtained in a 10 hour observa
tion of the dutch highway A13. The data are taken from 64 induction
loops imbedded in the road over a stretch of ca. 8 kilometres and a dis-

16

tance between measuring sites of 300-500 metres. An induction loop is
present in each lane and per loop the following parameters are measured:
-time of passage since the start of the experiment (in milliseconds),
-speed of the passing vehicle in km/h,
-approximate length of the vehicle.
Since the scarming of all 64 charmels takes place within a few
microseconds, the scanning period is irrelevant and the registration of
passing vehicles can be considered event driven. So, all passing cars are
measured during the IQ hour observation period (apart from those that
pass "in between" loops during overtaking; this sometimes results in a
faulty measuremem, but most often in a complete "miss").

Although the control system itself traditionally mainly operates on two
parameters, averaged speed and density (vehicles/m), we want our model
to be as accurate as possible. Since induction loops also provide data
about vehicle length, we decided to use this parameter to adapt the
descriptive variables. Based on the assumption that the predictions of the
neural network might be best if we provide as much information about the
traffic process as available we decided to increase the number of parame
ters beyond the two mentioned above. (In addition, we also felt that later
stage, we might need a greater level of detail).

Therefore, the 'raw' data mentioned above was coded and selected in the
following way:

average speed
average lane occupancy
average 'production' , a new parameter indicating passing
vehicle length per time unit (m veh /sec)
average vehicle length

We calculated these averages as moving averages over an averaging
period of 60 seconds, using a discounted least squares algorithm.

We did not use the complete data-set, but attempted to fit the neural net
work model on data derived from part of the second half of the observa
tion period (Le., between 14:00h and 16:00h). The reason for this is
twofold: this part of the data contains the most variation in traftic circum
stances, and we also wanted to validate the model against a part of the
data that was not included in the actual model fitting.
In addition, we only considered a small number (of the sixteen) locations.
This was done for two reasons: simplicity, and reduction in computing
time.

The modelled data-set was produced by a computer program specially
developed for this purpose.

After many false starts7
, a final data-set was created. It consisted of four

7Namely, unforeseen progress in the development of a reference model for the adapt
ive control strategy lead to a continuous t10w of new insights into the nature of traffic
flow processes (see Polak & Heijer, 1993). These new insights lead to a continuous re
definition of relevant traffic flow variables. This resulted in the obsolescence of to-be
modelled data-sets and of the models which were derived for those data-sets. It is not
unlikely that the data-set described here, and the resulting neural network model, will

17

highway locations, each separated by a distance of 500 m. from the previ
ous location. Each location included three lanes, and the second location
had an on-ranlp. The first, third, and fourth location had (3 lanes times 4
variables per lane =) twelve variables per measurement period; the second
location (with an on-ramp) had sixteen variables. 598 measurement
periods (of 12 seconds each) were studied in the modelling effort.

The input and output patterns for each clock tick (of 15 seconds) were
constructed in the following way. First of all, the values for all variables
for the first three locations (A,B, and C) measured at time ~ were
assembled into an input vector. Secondly the values for all variables for
the last three locations (B,C, and D) measured at time at time ~+i were
assembled into an output vector.
Locations A and D were therefore considered to be the spatial boundaries
of the modelled system. The parameters of location B at time tl+l could
be predicted by the parameters of the upstream. the identical, and the
downstream location, at a previous moment in time. The same is true for
location C. Parameters for locations A were never predicted, and parame
ters for location D were only predicted by parameters at the identical and
the up-stream location, at a previous moment in time.
Only one previous time step was used for each to-be-predicted output
pattern.

3.3 Model Characteristics and Architecture

Our primary goal was to achieve a reasonable model fit with a minimum
of computation: that is, we wanted an accurate as possible descnption of
the traffic flow data. Analysis of what the network was actually learning
was only considered to be a means towards that goal, and not a goal in
itself. In addition, exploration of alternative network architectures was
also of secondary concern.

In the initial stages of this study (where we considered data-sets which
were subsequently discarded), the work cycle was: choose a network
configuration, fit it to the data, look at the results, and make a guess as to
how it could be improved. Since, as we previously mentioned, it was
virtually impossible to systematically vary all possible combinations of
choices, it would appear that the present authors were doing their own
form of hill-climbing!

Some of the variations considered were:
using the hyperbolic tangent function, instead of the logistic
function, and doing the appropriate transformations;
using different combinations of learning parameters, and learning
parameter schedules for each network layer;
retrying the same network but with new random initializations;
adding random noise to node activation, and occasionally jog
ging connection weights (by adding noise);
adding new nodes (and weights) to a layer after the old nodes
(and weights) had already been fit;
using speed-up techniques (the extended bar delta bar technique

eventually be subject to the same fate.

etc.

18

seemed to be quite useful in this context);
adding bias tenns to nodes within one or more layers (which
allowed the logistic function to be translated along its' summed
input axis);

Eventually, however, after a great deal of trial and error, we were able to
choose (computer) program and model parameters which seemed to work
well. We will skip a discussion of the details of this learning process (and
the discarded models and data-sets), and only consider a description of the
general characteristics of the basic model, followed by descriptions of
each of a number of variations on the basic model.

All of the variations on the basic model considered consisted of a number
of common characteristics. They all used the logistic transfonn, with
injection of unifonnly distributed random noise, with no data clipping, and
no derivative offsets. All models had one hidden layer. There were no
direct connections from the input to the output layer. All hidden and all
output nodes had a bias tenn. The learning rates for the hidden and out
put layers were rather large for only the first hundred passes though the
data set, and then drastically reduced. Batch learning was used, with
random pattern sampling.

It should be noted that this general type of network (and its learning pro
cedure) is a fairly simple, standard, and direct one, which could be re
computed without exotic software by anyone with enough patience. The
only real deviation from the 'standard fonn' is the use of the extended bar
delta bar learning procedure, which was used to speed up the learning pro
cess.

TIllS general fonn is rather pleasing in that it minimizes the number of a
priori assumptions about underlying structure. On the other hand, a priori
assumptions can greatly enhance clarity of understanding (as well as learn
ing speed and vulnerability to catastrophic forgetting).

Starting from this general architecture, we investigated a number of vari
ations on this basic theme. This was done in order to ascertain the possi
bility of obtaining 'cheaper' (in the sense of less inter-node connections),
yet adequate, models, with a more transparent internal structure.

19

Instatlet (tm) Delta-Bar-Delta Hetwork version 1.88 38-Ma!r98

I n

Afbeelding 2 The BASE12 Model
First of all, we developed the so-called "standard" model. The hidden
layer, consisting of twelve nodes, was fully connected to both the input
and output layers (see Fig. 2). We refer to this as the BASE12 model.

Secondly, we considered a similar model, the so-called BASE40 model.
The major difference with the previous model is that the hidden layer
consists of 40 nodes instead of 12.

InstaHet (trn) Delta-Bar-Delta Hetwork version 1.88 38-t1a!r98

Figure 3The STRUC3x4 Model
Third of all, we considered a model which also consisted of a hidden
layer of 12 nodes, as in the BASE12 model. However, the 12 nodes were
divided into three groups of four nodes, each group corresponding to one
pair of (input-output) measurement locations. Namely, the connections
for the hidden nodes (of each group) were fully connected to all of the
variables for only one input location at time ~, and to all of the variables
for the following location at time ~+l. (See Fig. 3.) Let us designate this as
the STRUC3x4 model.

20

InstaHet (tm) Delta-Bar-Delh Network version 1. ee 38--t1ay-ge

I n

Figure 4The INPUT3x4 Model
A fourth model, the so-called INPUT3x4 model, was somewhat similar to
the STRUC3x4 model. Namely, the input connections were structured
similarly to that model. However, the connections from each hidden node
was fully connected to all of the output nodes for their respective loca
tions. (See Fig. 4.)

Two other models were considered, but not implemented due to time
constmints and computer problems. One model was an inverted
INPUT3x4 model: the hidden nodes were fully connected to the input
nodes, and connected to the variables of only one output measurement
location. The other model was similar to the STRUC3x4 model, yet the
connections to and from the hidden nodes were forced to have identical
values for all pairs of locations. We will not further discuss these two
models in this present report.

The purpose of fitting these four models was as follows. The BASE12
was intended to obtain a baseline model with a good fit, and with a
limited number of hidden (or latent) variables. Since each input (and
output) pattern has forty variables, and the hidden layer only twelve, we
are clearly implementing a data reduction. This model can viewed as a
global processing model, since all of the input locations are used to pre
dict all of the output locations. The BASE40 model was intended to see
to what extent the fit could be improved, albeit with a loss of parsimony
(40 hidden variables instead of only 12). The STRUC3x4 model con
siders the consequences of only assuming local influences of traffic at one
location at one point in time on the following location at the next moment
in time, with the assumption that each pair (of following) locations is
unique. The assumption of local influences can lead to local processing,
which would have decided advantages in a real world implementation.
The INPUT3x4 model was intended as a first step in investigating how
the local processing assumptions could be systematically relaxed into an
adequate semi-local model. Unfortunately, pmctical constraints precluded
a systematic investigation of this aspect.

21

3.4 Model Fits

These neural network models minimize the (root mean) sums of squares
of error (i.e., the differences between the actual 'output' variables and the
predictions of the neural network.) In the following we will only consider
comparisons based on those root mean sums of squares. (Actually, one
should also take the nm;;her of connections in a model, or degrees of
freedom, also into conSIderation. However, this will not be the main
thrust of our comparisons.)

The BASE12 model reliably achieved a fit of approximately 0.0750. (A
fit of 0.000 refers to perfect prediction.) The BASE40 model, with an
additional 28 hidden nodes, was able to improve this to only about
0.0675. This would seem to be a minuscule improvement, made at the
cost of a large loss of parsimony.
The STRUC3x4 model was only able to achieve a fit of about 0.1525,
even though it used only 33% of the number of connections as the
BASE12 model. Whether this trade-off between increased simplicity
versus decreased predictive accuracy is desirable, is another question.
The INPUT3x4 model achieved a fit of approximately 0.1100, which
intermediate to the BASE12 and the STRUC3x4 models, both in terms of
fit and in terms of number of connections. This result is somewhat disap
pointing. We had hoped that we could have purchased more predictive
accuracy for the increased cost (of adding connections). Further system
atic investigation should reveal whether a principled selection of additional
cOlmections (relative to the STRUC3x4 model) could achieve a better
cost/benefit ratio.

3.5 Comparison to a Linear Model

As we mentioned above, neural networks are capable of describing non
linear relations between dependent and independent variables, something
which is, per definition, not possible with linear models. By comparing
the network solution to a linear model, we can obtain some idea of the
amount of nO-linearity in the data-set, and some indication of the value
added by the above effort.

Of course, we would not want to compare any linear model with the neu
ral network, nor would we want to compare the network with a specially
tailored time-series model. (Namely, the data-set was heavily filtered,
using a discounted weighted least square model (see above). This created
rather large auto- and cross-correlations. Time series modelling could
then be profitably used for fitting the data.) Rather, we would want to
compare a model with a similar architecture. That is, we would want to
use the same information (c.q., structure of input and output variables),
and a similar number of latent (or hidden) variables.

We felt that a linear canonical correlation analysis (of the data-set used by
the network) would enable a fair comparison between the BASEI2 and
BASE40 network solutions and linear models. (Comparisons between the
structured network solutions and a linear model would require setting
some linear model coefficients equal to zero. This would have required a
special modelling effort, and was therefore not attempted.)

22

The BASE12 network solution resulted in an average 'explained variance'
(or average squared correlation coefficient) equal to 79.3 L7c. This is, prima
facie, a rather good tit, yet is not entirely surprising having noted that the
data is heavily filtered. The average explained variance of a twelve
dimensional linear solution (as indicated by canonical redundancy analy
sis) was somewhat less, 76.6%. (Please note that the nwnber of latent
variables and the nwnber of connections/coefficients are equal in both
cases.)
The linear model required 15 latent dimensions in order to achieve the
accuracy of the BASE12 neural network model; the network model was
able to achieve the accuracy of the twelve dimensional linear solution m
about 10-11 dimenslOns8

•

It would therefore appear that the neural network achieves a slightly better
tIt than a comparable linear model. Whether this difference, of about 2.5
percentage points of explained variance, would have any far reaching real
world consequences is a point of discussion beyond the scope of this
report.

It should be pointed out that analysis of the linear model indicated that
more that twelve (or even fifteen) latent dimensions were statistically
signitIcant predictors (although 12 dimensions seems to be adequate). We
therefore also compared the BASE40 solution with the complete 40
dimensional linear canonical correlation results.
Both (saturated) models were able to achieve about 85.5% explained vari
ance of the output variables.
Furthermore, the tIrst set of variables (the input or independent variables)
in the linear canonical correlation analysis was able to explain maximally
98.7% of the variance of the network predictions. (The network predic
tions explained less, 92.2%, of those independent variables.)

Our conclusions are therefore twofold:
-the use of non-linear transforms (i.e., the use of a neural network) results
in a somewhat more parsimonious description of traffic f10w characteris
tics in the present case (as compared to a similar model without those
transforms). This increase in parsimony, however, can hardly be con
sidered dramatic.
-in the limit (Le., the saturated models), the linear and the neural network
models are more or less identical. The neural network would therefore
seem to achieve its' superior parsimony by filtering erwr Since we
already made extensive attempts to filter out error witlun variables (see
above), it would seem that the network is filtering out correlated errors
over variables. (It may also be possible that the filtering procedure intro
duced systematic correlated errors. See Footnote 8.)
Whether this speculation is correct, and whether these hypothetical corre
lated errors are within or over measurement locations is unknown at this
moment.

8Interestingly enough, this 2.5% superiority of the neural network was also found in
preliminary studies done on data from other locations, with different time windows,
smoothing assumptions, and variables. This superiority was not found when no smoothing
was done.

23

4.0 DISCUSSION AND CONCLUSIONS

The purpose of this study was to use a neural network to predict highway
traffic flow characteristics on the basis of measurements made at a previ
ous moment in time. Once fit, such a model could then be used to test
and calibrate an adaptive control strategy. As such, this study should be
viewed as part of a larger effon to develop such a system-wide strategy
(Wu & Heijer, 1991).

Neural network models were chosen because, once fitted, they are very
fast, and because they are capable of detecting and utilizing complex, non
linear relationships in the data. In addition, it was felt that the use of a
variety of modelling methodologies would contribute to the robustness of
the overall effort.

Raw data was obtained from induction loops located on the Dutch nation
al highway Al3. This data was coded and smoothed in a marmer com
mensurate with theoretical insights developed by Polak & Heijer (1993),
and fit to a neural network.

The overall fit of the neural network model to a description of traffic flow
characteristics was rather good: on the average, 79.3% of the variance of
the smoothed ('future') variables was 'explained' by the model. This fit
was, however, only somewhat better than a comparable multivariate linear
model, which explained 76.6%. It remains to be seen whether this
improvement in predictive power is of practical significance, or whether,
for all intents and purposes, the traffic flow characteristics (as measured
and defined in this study) can be viewed as a linear process with noise.
(The nature of this 'noise' is yet to be determined.)

It remains uncertain, however, whether this generalization also applies to
lower levels of aggregation, to other traffic situations, and to measure
ments over larger sections on a highway network. (For example, conges
tion can lead to oscillations in flow characteristics, and downstream condi
tions can also effect upstream conditions.)

A number of limitations of the present study should be pointed out. In
the first place, a model was fitted, yet not validated on another, similar
road section, or on the same road section, on another day. Such a vali
dation is necessary, and can be implemented without much difficulty. A
second limitation is that we have no idea of how well the fitted model
parameters (or the general model itself) would generalize to other road
sections and/or traffic conditions. It would be foolish (and risky) to
assume that such a generalization would be automatic: it has to be
explicitly tested.

A additional point should be made concerning a central aspect of the
neural network model used: it can continue to learn, even after initial
training, yet it can also forget. This is not a problem if we fit the model
to a given learning data set, and then 'freeze' the parameters. If, however,
we allow the model to continue learning, in the hope that new, unforeseen
regularities can also be assimilated, then we run a risk that acquired
knowledge about old, known situations may also be (partially) lost. Due
to the possibly severe consequences in this case, it is imperative that
guidelines be formulated for the supervision and evaluation of ongoing

24

neural network adaptation.

It should be emphasized that these precautions are not unique for the
application of neural networks: they make methodological good sense for
any model.

In conclusion, we can stmc that neural networks can be reliably applied to
the prediction of traffic now characteristics. It has, however, not been
demonstrated that such network models are unquestionably superior to
other, simpler models. Nevertheless, this seems to be more of a question
of the investigated data-set than the potential power of the models. We
fully expect that, in the near future, neural network models will be fruit
fully applied to many problems of traffic now measurement, prediction,
and control.

25

LITERATURE

Anderson, J.,A., & Rosenfeld, E. (eds.), 1988, NEUROCOMPUTING:
Foundatjons of Research, The MIT Press, Cambridge, Massachusetts.

Wu, Bill-fan. Heijer, T., 1991,A Hierarchical Adaptive Control Scheme for
a Freeway Network based on a Twofold Modelling and Control Strategy,
SWOY, Leidschendam.

McClelland, J.L., Rumelhart, D.E., & The PDP Research Group, 1986.
PARALLEL DISTRIBUTED PROCESSING: Explorations in the
Microstructure of Cogrution, vol. 2., The MIT Press, Cambridge,
Massachusetts.

NeuralWare, Inc., 1991, Neural Computing, NeuralWare, Inc., PittSburgh,
Pennsylvania.

Polak, P., & Heijer, T., 1993, The development and implementation of a
theoretical model for traffic control, forthcoming.

Rumelhart, D.E., McClelland, J.L., & The PDP Research Group, 1986,
PARALLEL DISTRIBUTED PROCESSING: Explorations in the
Microstructure of Cognition, vol. 1, The MIT Press, Cambridge,
Massachusetts.

Appendix A

The computer code for the neural network, written in the
programming language C, is listed below, The code represents
the last model that was fitted which contains 3 instead of 4
cross-sections namely: section A with 3 lanes, section B with 3
lanes and an on-ramp and section C again with 3 lanes. For each
section there were 16 parameters: 4 for each lane plus 4 for an
on- or off ramp: if none present, the parameters are O.
This program transforms input vector Yin into prediction Yout.
Both in - and outputvector contain data for all 3 subsequent
cross-sections in the following manner:
first cross-section lane 1-4: vehicle length, production, lane
occupancy, speed
second cross-section: etc.
Thus, per cross-section there are 4 variables per lane, which,
with 3 cross-sections and an on-ramp, leads to a total of 48 for
the complete vector.
Lane 1 in those cross-sections is always the leftmost lane, lane
4 represents an on-ramp, if present (if not, the parameters for
lane for are all 0).
The predictions must be primed once with a measured state in
all 3 cross-sections. After this initiation, the model can be run
by providing new parameter values only for the first cross
section (the first 12 parameters) and the on-ramp (lane 4 of
cross-section 2).
There are several possibilities to obtain new parameters for this
first section:
- random draw from existing data in a limited time window: the
window may be shifted over these data to simulate longer
periods
- sythesize data on the basis (simultaneous) distribution
properties of the variables.
The first option is simple and fast but limited to the range of
parameters measured. The second option permits larger
variations than present in the original data, which can be useful
to investigate extremes, but requires more preparation.

The remaining varables of the input vector can be obtained by
copying the relevant parts of the output vector Yout to the input
vector:
the first 12 positions of Yout (prediction for the state of the
second cross-section) move to the positions 17 to 32 of Yin, 17-
32 of Yout is copied to 33- 48 of Yin. Positions 29-32 of Yin
correspond to the on-ramp of the system nad these parameters
may be generated by a control algorithm.

26

In this way, we obtain a prediction of the state of cross-section
3 in Yout 33-48, incorporating the effect of the initial state and
the (possibly metered) input of the on-ramp.

27

Appendix A
/* Control Strategy is: <dbd> *1

#if STDC
#define ARGS(x) x
#else
#define ARGS(x) 0
#endif /* _STDC_ */

/* --- External Routines --- *1
extern double exp ARGS«double»;
/* *** MAKE SURE TO LINK IN YOUR COMPILER's MATH LIBRARIES *** */

#if STDC
int ~'lN_Recall(void *NetPtr, float Yin[48], float Yout[48])
#else
int NN_Recall(NetPtr, Yin, Yout)
void *NetPtr; f* Network Pointer (not used) * /
float Yin[48], Yout[48]; 1* Data *f
#endif f* _STDC_ */
(

static float Xout[11 0]=0; f* work arrays "'1
long ICmpT; 1* temp for comparisons */

/* **" WARNING: Code generated assuming Recall = 0 *** *f

/* Read and scale input into network *1
Xout[2] = Yin[Oj * (2.6315815) + (-11.263169);
Xout[3] = Yin[l] * (0.39999999) + (-0.37999999);
Xout[4] = Yin[2] * (11.111 I 11) + (-0.22222222);
Xout[5] = Yin[3] * (0.13774104) + (-3.6611569);
Xout[6] = Yin[4j .. (0.89285723) + (-3.8214291);
Xout[7] = Yin[5] * (0.42553192) + (-0.40000001);
Xout[8] = Yin[6] * (16.666667) + (-0.83333336);
Xout[9] = Yin[7] * (0.17331027) + (-4.351821);
Xout[lO] = Yin[8] ... (0.29154516) + (-1.5072885);
Xout[ll] = Yin[9] * (0.29761906) + (-0.36309526);
Xout[l2] = Yin[IO] ... (20) + (-I);
Xout[13] = Yin[1l] * (0.21598276) + (-4.8056164);
Xout[14] = Yin[12];
Xout[15] = Yin[l3];
Xout[16] = Yin[14];
Xout[17] = Yin[15];
Xout[18] = Yin[16j * (2) + (-8.5799999);
Xout[19] = Yin[17] * (0.47619048) + (-0.45714285);
Xout[20] = Yin[18] .. (11.111111) + (-0.22222222);
Xout[21] = Yin[19] * (0.17605639) + (-5.0228889);
Xout[22] = Yin[20] * (0.94339628) + (-4.0660379);
Xout[23] = Yin[21] .. (0.49261084) + (-0.50246305);
Xout[24] = Yin[22] .. (16.666667) + (-0.83333336);
Xout[25] = Yin[23] * (0.19762848) + (-5.1027673);
Xout[26] = Yin[24] * (0.39370079) + (-1.9448819);
Xout[27] = Yin[25] ... (0.5181347) + (-0.67357508);
Xout[28] = Yin[26] * (16.666667) + (-I);
Xout[29] = Yin[27] .. (0.28901726) + (-6.5953737);
Xout130] = Yin[28] .. (0.21367524) + (-0.91880359);
Xout[31] = Yin[29] ... (0.33557044) + (-0.771812);
Xout[32] = Yin[30] ... (50.000001) + (-0.5);
Xout[33] = Yin[31] .. (0.24570026) + (-5.7886981);
Xout[34] = Yin[32] * (3.3333312) + (-14.69999);
Xout[35] = Yin[33] * (0.42016808) + (-0.38655464);
Xout[36] = Yin[34]* (11.111111) + (-0.33333333);
Xout[37] = Yin[35] * (0.13192612) + (-3.5580474);
Xout[38] = Yin[36] .. (1.0416666) + (-4.5624999);
Xout[39] = Yin[37] * (0.62499994) + (-0.64999992);
Xout[40] = YinL38] * (16.666667) + (-0.83333336);
Xout[41] = Yin[39] * (0.17241382) + (-4.2879317);
Xout[42] = Yin[40] .. (0.30769231) + (-1.6553847);
Xout[43] = Yin[4l) * (0.49751241) + (-0.5820895);
Xout[44] = Yin[42) .. (16.666667) + (-I);
Xout[45] = Yin[43] .. (0.25062658) + (-5.5814541);
Xout[46] = Yin[44];
Xout[47) = Yin[45];
Xout[48] = Yin[46];
Xout[49] = Yin[47];

LAB 1 10:
/* Generating code for PE 0 in layer 3 *1
Xout[50) = (float)(-O.63495332) + (float)(-O.011373612) .. Xout[2) +

(float)(0.21471745) .. Xout[3] + (float)(-0.24948266) * Xout[4] +
(float)(0.91676611) .. Xout[5] + (float)(0.5359) .. Xout[6] +
(float)(-O.58358109) * Xout[7] + (float)(-O.22994356) .. Xout[8) +
(float)(-O.61512858)" Xout[9] + (float)(-O.68383 133) .. Xout[lO] +
(float)(-O.431142)" Xout[1l] + (float)(0.76919115)" Xout[l2] +

28

(float)(-O.46741852) " Xout[13] + (float)(-O.31274533) " Xout[14] +
(float)(-O.25629923) " Xout[l5] + (float)(-O.19553611) " Xout[16] +
(float)(-0.33724785) " Xout[17] + (float)(-0.66709805) " Xout[18J +
(float)(-O.79743904) " Xout[19] + (float)(-O.011748856) " Xout[20] +
(float)(0.965 1677) " Xout[21] + (float)(1.l976831" Xout[22] +
(float)(-0.070656903) .. Xout[23] + (float)(0.032656174) .. Xout[24] +
(float)(-0.66685259) .. Xout[25] + (float)(-O.1l587924) .. Xout[26] +
(float)(-1.7267398) " Xout[27] + (float)(0.32751361) .. Xout[28] +
(float)(-O.24657559) .. Xout[29j + (float)(-O.058521315) .. Xout[30j +
(float)(I.483824) .. Xout[31] + (float)(1.l801918) .. Xout[32] +
(float)C1.7115626) .. Xout[33] + (float)(O.69951856) .. Xout[34] +
(float)(-O.06650579) .. Xout[35] + (float)(0.15894367) .. Xout[36] +
(float)(0.35241473) " Xout[37) + (float)(-1.3754277) .. Xout[38) +
(float)(0.46970424) * Xout[39) + (float)(-O.0043533775) * Xout[40) +
(float)(-1.3404995) .. Xout[41] + (float)(1.712384l) * Xout[42) +
(float)(-1.5074114) .. Xout[43j + (float)(0.93532354) .. Xout[44j +
(float)(1.6701519) .. Xout[45] + (float)(-0.33005369) * Xout[46j +
(float)(-0.24610591) * Xout[47] + (float)(-O.21275181) .. Xout(48) +
(float)(-O.26227057) " Xout[49];

Xout[50] = 1.0 I (1.0 + exp(-Xout[50j »;
/* Generating code for PE 1 in layer 3 *'
Xout[51] = (float)(0.54086202) + (float)(-O.3700186) .. Xout[2] +

(float)(-0.18168452) .. Xout[3] + (float)(-O.055866528) .. Xout[4) +
(float)(O.l2926193) .. Xout[5j + (float)(-0.06596759) * Xout[6j +
(float)(-O.21907549) .. Xout[7) + (float)(-O.042917494) * Xout[8) +
(float)(0.70855105) * Xout[9] + (float)(-0.099762164) * Xout[10) +
(float)(0.27268 153) .. Xout[ll) + (float)(0.014543353) * Xout[12] +
(float)(0.080683254) * Xout[13] + (float)(0.31348673) * Xout[14] +
(float)(0.17603369) .. Xout[15] + (float)(0.17072241) .. Xout[l6] +
(float)(0.31045559) " Xout[17) + (float)(-O.66689813) .. Xout[18) +
(float)(0.1236593) * Xout[19] + (float)(-0.45657286) .. Xout[20] +
(float)(0.38499913) .. Xout[21] + (float)(-O.090728104) .. Xout[22] +
(floatl(0.42508364) .. Xout[23] + (float)(0.099161647) * Xout[24j +
(float)(0.088 184446) .. Xout[25j + (float)(-0.87408054) * Xout[26] +
(float)(-0.10667372) * Xout[27] + (float)(-O.53787899) * Xout[28j +
(float)(0.47143811)" Xout[29] + (float)(-O.1l706431)" Xout[30) +
(float)(0.53921086) .. Xout[3l] + (float)(0.50191516) .. Xout[32] +
(float)(-O.65274042) .. Xout[33] + (float)(-1.8541684) .. Xout[34) +
(float)(0.29308212) .. Xout[35] + (float)(0.033048846) .. Xout[36] +
(float)(-O.2543346) .. Xout[37] + (float)(-O.1l308935) .. Xout[38] +
(float)(0.031081337) .. Xout[39j + (float)(-O.081991494) .. Xout[40] +
(float)(-O.35203421) .. Xout[41] + (float)(-O.18631627) .. Xout[42) +
(float) (-0. 572 I 8748) .. Xout[43] + (float)(-O.17646015) .. Xout[44] +
(float)(0.3991428) .. Xout[45] + (float)(0.29120764) .. Xout[46] +
(float)(0.17695381) .. Xout[47] + (float)(0.29773137) .. Xout[48] +
(float)(0.27420762) .. Xout[49];

Xout[51] = 1.0 I (1.0 + exp(-Xout[51) »;
/* Generating code for PE 2 in layer 3 .. /
Xout[52) = (float)(-O.17357253) + (float)(0.51026928) .. Xout[2] +

(tloat)(-0.09376654) .. Xout[3) + (float)(-O.054549322) .. Xout[4) +
(float)(-O.31562617) .. Xout[5] + (float)(0.12599145) .. Xout[6] +
(float)(-O.I04875l) .. Xout[7] + (float)(-O.l7034683) .. Xout[8) +
(float)(-O.21874747) .. Xout[9] + (float)(-O.50566018) .. Xout[lO) +
(float)(0.071527988) .. Xout[ll) + (float)(-O.023923784) .. Xout[12) +
(float)(0.12305678)" Xout[13j + (float)(-O.10094954)· Xout[14) +
(float)(0.021821555) .. Xout[l5) + (float)(0.011320068) .. Xout[16) +
(float)(-O.060499124) .. Xout[17] + (float)(0.23596604) .. Xout[18] +
(float)(0.088493764)" Xout[19) + (float)(-O.19103557) .. Xout[20) +
(float)(0.12294304) .. Xout[21] + (float)(O.19326495) '" Xout[22] +
(float)(0.3334755) .. Xout[23] + (float)(-O.33368164) .. Xout[24] +
(float)(0.18300989) .. Xout[25) + (float)(-1.2668388) .. Xout[26j +
(float)(-1.3534703) .. Xout[27) + (float)(0.31445384) .. Xout[28) +
(float)(-0.060470361) .. Xout[29] + (float)(-1.072058) .. Xout[30) +
(float)(-O.81146157) .. Xout[31] + (float)(1.2040931) .. Xout[32] +
(float)(O.20241591) .. Xout[33] + (float)(0.87953722) .. Xout[34j +
(float)(0.6056127) .. Xout[35] + (float)(-0.89499015) .. Xout[36] +
(float)(0.44661835) .. Xout[37] + (float)(0.453 1039) .. Xout[38] +
(float)(1.5543835) .. Xout[39) + (float)(-0.010512762) .. Xout[40] +
(float)(0.78583872) .. Xout[41] + (float)(-O.93994778) .. Xout[42j +
(float)(-0.85553789) .. Xout[43) + (float)(0.25198886) .. Xout[44) +
(float)(0.16974337) .. Xout[45) + (float)(-O.022152375) .. Xout[46] +
(float)(-O.10255505) • Xout[47] + (float)(-O.030970838) .. Xout[48) +
(float)(-O.1l070077) .. Xout[49];

Xout[52] = 1.0 / (1.0 + cxp(-Xout[52)));

/* Generating code for PE 3 in layer 3 ./
Xout[53] = (float) (0. 13949104) + (float)(0.10189875) .. Xout[2] +

(float)(-O.55026507) '" Xout[3] + (float)(0.21085982) .. Xout[4] +
(float)(1.1541545) .. Xout[51 + (float)(0.36357248) .. Xout[6] +
(float)(0.39584774) .. Xout[7) + (float)(-0.046483487) .. Xout[8] +
(float)(0.5676592) .. Xout[9] + (float)(-O.70274276) .. Xout[lO] +
(float)(0.26898298) .. Xout[llj + (float)(0.OOO20120759) .. Xout[l2] +

29

(float)(-O.39827794) .. Xout[13j + (float)(0.08736553) .. Xout[l4j +
(float)(0.14117919) .. Xoot[l5] + (float)(-O.025063034) .. Xout[16] +
(float)(-O.040395781) * Xoot[17j + (float)(OA2403224) .. Xout[l8j +
(float)(-0.92850965) .. Xout[19] + (float)(0.13591525) * Xout[20j +
(float)(0.17193057)" Xoot[21] + (float)(-O.39501804)" Xout[22] +
(float)(0.58620834) .. Xoot[23] + (float)(0.12553707) .. Xout[24] +
(float)(0.26471254) .. Xoot[25] + (float)(-1.0157481) .. X"l:!i26] +
(float)(-O.24690114)" Xout[27] + (float)(O.ll004148) ":28) +
(fioat)(0.44747251) .. Xoot[29] + (float)(0.13314532) .. .;30] +
(fioat)(0.088985085) .. Xout[31) + (float)(-1.I841747) * .\vut[32) +
(float)(-O.21754375) .. Xout[33] + (float)(0.51002938) .. Xout[34] +
(float)(-0.29807806) .. Xout[35] + (float)(1.2135274) .. Xoot[36j +
(float)(-0.42891556) .. Xout[37] + (float)(0.3979947) * Xoot[38) +
(float)(0.40132305)" Xoot[39] + (float)(-O.l9484264)" Xout[40) +
(float)(-0.72129041) .. Xout[41] + (float)(-O.3358019) .. Xout[42J +
(float)(-O.44215018) .. Xout[43] + (float)(0.2317975) .. Xoot[44] +
(float)(-1.371945) * Xoot[45) + (float)(0.097398855) .. Xoot[46] +
(float)(-O.013195818) .. Xoot[47j + (float)(0.01290418) .. Xout[48j +
(float)(0.12439603) .. Xoot[49);

Xout[53) = 1.0/ (1.0 + exp(-Xout[53] »;
/* Generating code for PE 4 in layer 3 */
Xout[54) = (float)(-O.20105506) + (float)(0.22468172) .. Xoot[2] +

(float)(-O.6927318) .. Xout[3] + (float)(OA091163) .. Xout[4) +
(float)(0.47609633) .. Xoot[5] + (float)(0.16533674) .. Xoot[6] +
(float)(-O.22636612) .. Xout[7) + (float)(0.069191441) .. Xout[8] +
(float) (-0. 10517604) .. Xout[9] + (float)(-O.25750095)" Xout[lO] +
(float)(0.0064930827) .. Xout[ll) + (float)(O.l9565172) .. Xoot[l2] +
(float)(0.56902945)" Xoot[l3] + (float)(-O.1l431003)" Xout[14] +
(float){-0.2028603) .. Xout[15j + (float)(-O.023412565) .. Xoot[16j +
(float)(-O.0517981I3) .. Xoot[l7] + (float)(0.069247685) .. Xoot[18] +
(float)(-O.87400419) .. Xout[19) + (float)(-O.1078627) .. Xout[20] +
(float)(0.61493742) .. Xoot[21j + (float)(-O.21227697) .. Xout[22] +
(float)(-O.63795429) .. Xout[23] + (float)(0.055845942) * Xout[24] +
(float)(-O.OO23771757) .. Xout[25) + (float)(0.012703186) .. Xout[26] +
(float)(-O.53479058) .. Xout[27j + (float)(0.14113513) .. Xout[28) +
(float)(0.66652876) .. Xoot[29j + (float)(0.63246948) .. Xout[30j +
(float)(1.4532244) .. Xout[31] + (float)(1.l156636) .. Xout[32] +
(float)(-2.5521057) .. Xout[33J + (float)(0.56124854) .. Xoot[34] +
(float)(-O.14273176) .. Xout[35] + (float)(0.12417153) .. Xout[36] +
(float)(-O.27993402) .. Xout[37] + (float)(-O.23759179) .. Xoot[38j +
(float)(-O.044650033) .. Xoot[39] + (float)(0.14766996) .. Xout[40] +
(float)(1.4994899) .. Xout[41] + (float)(-0.19950646) * Xoot[42] +
(float)(-0.31506014) .. Xout[43] + (float)(-O.11455775) .. Xoot[44] +
(float)(0.62934107) .. Xoot[45] + (float)(-O.075667903) .. Xout[46] +
(float)(-O.058001682) .. Xoot[47] + (float)(-O.065247625) * Xout[48] +
(float)(-O.12719113)" Xout[49);

Xout[54] = 1.0 I (1.0 + exp{ -Xout[54] »;
/* Generating code for PE 5 in layer 3 */
Xout[55] = (float)(1.2739719) + (float)(O.12358622) .. Xoot[2] +

(float)(-O.OO11564116) .. Xout[3] + (float)(-O.5352124) * Xoot[4) +
(float)(-O.9896313) .. Xout[5] + (float)(0.25093728) .. Xout[6] +
(float)(-O.58066022) .. Xout[7] + (float)(-O.6361075) .. Xout[8) +
(float)(-O.10442054) .. Xout[9] + (float)(-O.21724081) .. Xout[lO] +
(float) (-0. 13287511) .. Xout[ll) + (float)(-O.034477122) .. Xout[12j +
(float)(0.1293897)" Xout[l3] + (float)(0.54324669) .. Xoot[14) +
(float)(0.50855917)" Xoot[15] + (float)(0.64D62589) .. Xout[16] +
(float)(0.66025239) .. Xoot[17] + (float)(0.62916249) .. Xout[I8) +
(float)(0.16684332) ... Xoot(19) + (float)(-O.4016933 1) .. Xout[20) +
(float)(0.038857784) .. Xout[21] + (float)(0.30590743) .. Xout[22) +
(float)(-O.29211655) .. Xout[23] + (float)(-O.72319937) .. Xoot[24) +
(float)(-O.1232236) .. Xout[25j + (float)(0.47761947) .. Xoot[26) +
(float)(-O.88616043) ... Xout[27] + (float)(-I.6025869) .. Xout[28] +
(float)(0.14755373) .. Xoot[29] + (float)(-1.5308527) .. Xoot[30] +
(float)(-O.74065667) .. Xout[31) + (float)(2.0079441) .. Xoot[32) +
(float)(-0.6584484) ... Xout[33) + (float)(0.24768226) .. Xoot[34] +
(float)(0.23630543) .. Xoot[35] + (float)(-O.79035771) .. Xout[36) +
(float)(-1.5325606) .. Xout[37] + (float)(-O.600079) .. Xoot[38) +
(float)(-0.55377084) .. Xout[39) + (float)(-O.67059439) .. Xoot[40) +
(float)(-O.71625412) .. Xout[41] + (float)(0.57290006) .. Xout[42) +
(float)(-O.74958003) .. Xout[43) + (float)(-O.083881944) .. Xout[44] +
(float)(-O.034407057) .. Xoot[45] + (float)(0.68412584) .. Xout[46] +
(float)(0.60689795) .. Xoot[47) + (float)(0.5736751) .. Xoot[48) +
(float)(0.59332556) .. Xoot[49);

Xout[55] = 1.0 I (1.0 + expC -Xout[55) »;
/* Generating code for PE 6 in layer 3 "I
Xout[56] = (float)(0.56586242) + (float)(-O.36933059) .. Xoot[2] +

(float)(-0.66693872) .. Xout[3] + (float)(0.40064433) .. Xoot[4] +
(float)(0.73532015) .. Xoot[5) + (float)(-0.93871421) .. Xoot[6] +
(float)(0.35009968) .. Xoot[7j + (float)(0.50690699) .. Xoot[8) +
(float)(0.45120305)" Xoot[9] + (float)(-O.22918911)" Xoot[lO) +
(float)(-O.034334045) .. Xoot[ll] + (float)(0.5671075) .. Xout[12] +

30

(float)(-O.030097445) .. Xout[l3) + (float)(0.35256785) .. Xout[14j +
(float)(0.29476064) .. Xout[15J + (float)(0.24095441) .. Xout[l6) +
(float)(O.27967) .. Xout[l7] + (float)(-O.52735549) .. Xout[l8) +
(float)(-0.034091577) .. Xout[19) + (float)(l.0079882) .. Xout[20j +
(float)(O.38028258) .. Xout[21] + (float)(-2.5052698) .. Xout[22j +
(float)(-O.44483 191) .. Xout[23j + (float)(-O.15290855) .. Xout[24j +
(float)(O.32594562) * Xout[25] + (float)(O.72212088) .. Xout(26) +
(float)(0.40015146) .. Xout[27) + (float)(1.3505418) .. Xout[28) +
(float)(-0.021075681) .. Xout[29J + (float)(-O.25375205) .. Xout[301 +
(float)(-1.5281478) .. Xout[31j + (float)(-O.82626092) .. Xout[32) +
(float)(-O.86877435) .. Xout[33j + (float)(-O.97092295) .. Xout[34j +
(float}(0.23536199) .. Xout[35] + (float)(-O.26608816) .. Xout[36] +
(float)(-0.94527662) .. Xout[37] + (float)(-l.3477619) .. Xout[38] +
(float)(-O.095986016) .. Xout[39) + (fie." HO.38609573) .. Xout[40] +
(float)(OA8803288) .. Xout[41) + (floal/l-I.0740809) .. Xout[42) +
(float)(0.44735703) .. Xout[43] + (float)(0.213048) .. Xout[44] +
(float)(-1.l52295) .. Xout[45] + (float)(0.34040087) .. Xout[46) +
(float)(0.18813749) .. Xout[47) + (float}(0.33993649) .. Xout[48] +
(float)(0.27205342) .. Xout[49];

Xout[56] = 1.0/ (1.0 + exp(-Xout[56] »;
/* Generating code for PE 7 in layer 3 */
Xout[57] = (float)(-O.29485977) + (float)(0.22406372) .. Xout[2] +

(float)(O.32174391)" Xout[3] + (float)(-O.63 177186) .. Xout[4] +
(float)(0.OO73282174) .. Xout[5J + (float)(0.1586794) .. Xout[6j +
(float)(O.10309328) .. Xout[7) + (float)(-0.078165293) .. Xout[8) +
(float)(-O.012613529) .. Xout[9) + (float)(0.16958965) .. Xout[lO] +
(float)(-O.040859964) .. Xout[ll] + (float)(-O.00047394569) .. Xout[l2]
+ (float)(0.51511228) .. Xout[13) + (float)(-O.2753855) .. Xout[14] +

(float)(-O.l5141223) .. Xout[15] + (float)(-O.l5668197) .. Xout[16] +
(float)(-O.24348216) .. Xout[17j + (float)(-O.070271224) .. Xout[18] +
(float)(0.15415566)" Xout[19J + (float)(-O.5239898)" Xout[20J +
(float}(0.74738663) .. Xout[21) + (float)(-O.021152984) .. Xout[22) +
(float)(-0.252498) .. Xout[23] + (float)(-OA7565472) .. Xout[24j +
(float)(0.46268404) .. Xout[25j + (float)(0.71692646) .. Xout[26) +
(float)(-O.87645817) .. Xout[27) + (float)(0.027768299) .. Xout[28j +
(float)(OA5354754) .. Xout[29j + (float)(0.5184868) .. Xout[30J +
(float)(1.4414446) .. Xout[31) + (float)(-l.0185164) .. Xout[32] +
(float)(-1.2611992) .. Xout[33j + (float)(0.94681245) .. Xout[34) +
(float)(0.80429518)" Xout[35] + (float)(-0.48626092) .. Xout[36] +
(float)(0.22194217) .. Xout[37) + (float)(0.053984258) .. Xout[38] +
(float)(-0.10032623) .. Xout[39) + (£1oat)(-O.3497102) .. Xout[40) +
(float)(0.38406181) .. Xout[41] + (float)(0.1493817) .. Xout[42) +
(£1oat)(-0.704(6449) .. Xout[43] + (float){0.21372479) .. Xout[44) +
(float)(-1.0924242) .. Xout[45] + (float)(-O.17655207) .. Xout[46) +
(float)(-O.08479514) .. Xout[47) + (float)(-O.l493815) .. Xout[48] +
(float)(-0.2257648) .. Xout[49);

Xout[571 = 1.0 I (1.0 + exp(-Xout[57)));

/* Generating code for PE 8 in layer 3 .. /
Xout[58] = (float)(-1.5923505) + (float)(0.18126073) .. Xout[2) +

(float)(0.048812006) .. Xout[3) + (float)(-O.39372683) .. Xout[4j +
(float)(1.2156512) .. Xout[5] + (float)(0.59015393) .. Xout[6) +
(float)(-O.4295682) .. Xout[7] + (float)(-O.32028252)" Xout[8] +
(float) (0. 88752508) .. Xout[9) + (float)(-0.46801144) .. Xout[IO) +
(float)(0.53548294) .. Xout[l1) + (float)(0.31162575) .. Xout[l2] +
(float)(-O.62029624) .. Xout[13] + (float)(-O.74793446) .. Xout[14) +
(float)(-0.70039487) .. Xout[15] + (float)(-0.776003) .. Xout[16] +
(float)(-O.77511573) .. Xout[17) + (float)(O.l4190286) .. Xout[18) +
(float)(-O.68547916) .. Xout[l9] + (float)(-O.10005734) .. Xout[20] +
(float)(0.93411827) .. Xout[21) + (£1oat)(-OA0749294) .. Xout[22] +
(float)(1.6403668) .. Xout[23) + (£1oat)(-0.12842295) .. Xout[24) +
(float)(0.76891935) .. Xout[25] + (float)(0.275316) .. Xout[26] +
(float)(0.70664173) .. Xout[27] + (float)(0.10833843) .. Xout[28) +
(float)(0.26961005) .. Xout[29] + (float)(0.65789753) .. Xout[30) +
(float)(-O.26605067) .. Xout[31) + (float)(0.97291052) .. Xout[32] +
(float)(1.l553342) .. Xout[33] + (float)(0.37810156) .. Xout[34j +
(float)(-O.038276654) .. Xout[35j + (float)(0.90224564) .. Xout[36) +
(float)(-O.061171401) .. Xout[37) + (float)(0.OO3520912) .. Xout[38) +
(float)(1.4937876) .. Xout[39) + (float)(0.051848672) .. Xout[40j +
(float)(-O.96272814) .. Xout[41) + (float)(1.372381) .. Xout[42] +
(float)(-O.29946288) .. Xout[43] + (float)(0.50876653) .. Xout[44] +
(float)(0.6017341) .. Xout[45) + (£1oat)(-0.69839787) .. Xout[46j +
(float)(-O.69324684) .. Xout(47) + (float)(-O.75035655) .. Xout[48] +
(float)(-0.83586276) .. Xout[49);

Xout[58] = l.0 / (1.0 + exp(-Xout[58] »;
/* Generating code for PE 9 in layer 3 .. /
Xout[59] = (float)(0.5416944) + (float)(0.15000497) .. Xout[2) +

(float) (-0. 12338259) .. Xout[3) + (float)(-O.31689623) .. Xout[4] +
(float)(0.159587) .. Xout[5) + (float)(-O.1l926581) .. Xout[6) +
(fioat)(-O.055541813) .. Xout[7j + (float)(-OA8028594) .. Xout[8] +
(float)(-O.076991759) .. Xout[9] + (float)(-O.42255327) .. Xout[10j +
(float)(-O.1861871)" Xout[ll) + (float)(-O.075230286)" Xout[12j +

31

(float)(-O.1782358) .. Xout[13J + (float)(0.22479539) .. Xout[14J +
(float)(0.33376971) .. Xout[15j + (float)(0.21946605) .. Xout[16j +
(float)(0.15987192) .. Xout[17j + (float)(-0.33082253) * Xout[I8] +
(float)(0.65715367) * Xout[19j + (float)(0.36685103) .. Xout[20j +
(float)(0.71706665) .. Xout[21j + (float)(-O.79971886) .. Xout[22j +
(float)(0.18586251) .. Xout[23] + (float)(-0.19874921) .. Xout[24] +
(float)(0.016538784) .. Xout[25j + (float)(-0.53400767) .. Xout[26] +
(float)(0.10623104)" Xout[27j + (float)(-1.0225739)" Xout{28] +
(float)(0.036707461) * Xout[29j + (float)(0.44361988) .. Xout[30] +
(float)(0.20848507) ... Xout[31] + (float)(0.38812453) .. Xout[32) +
(float)(OA2509636) .. Xout[33) + (float)(0.37347594) .. Xoutl34] +
(float)(-O.753 18253) .. Xout[35] + (float)(0.040563457) .. Xout[36) +
(float)(-1.l420361)" Xout[37) + (float)(-2.0562191)'" Xout[38j +
(float)(-O.2450887) .. Xout[39] + (float)(-O.050812438) .. Xoot[40) +
(float)(-O.44245818) .. Xout[4l] + (float)(-0.54716414) * Xoot[42] +
(float)(0.65176606) * Xout[43) + (float)(-O.027478792) * Xout[44] +
(float)(0.6727007) .. Xout[45] + (float)(0.3155956) .. Xout[46] +
(float)(0.33797863) * Xout[47] + (float)(0.23575915) .. Xout[48l +
(Hoat)(0.16986759) .. Xoot[49];

Xout[59) = 1.0 I (1.0 + exp(-Xout[59j »;
/* Generating code for PE 10 in layer 3 */
Xout[109) = (float)(-1.3895786) + (float)(0.063122712) ". Xout[2j +

(float)(-0.21582234) ". Xout[3j + (float)(0.5492965) * Xout[4] +
(float)(0.92746276) * Xoot[5] + (float)(0.17635921) .. Xout[6] +
(float)(-O.37018704) .. Xout[7] + (float)(0.22885533) .. Xoot[8] +
(float)(1.1699438) .. Xout[9j + (float)(-O.17973369) .. Xout[lOl +
(float)(0.3108983) .. Xout[ll] + (float)(0.20651363) * Xoot[12] +
(float)(0.82667094) * Xout[13] + (float)(-O.57625371) * Xout[14] +
(float)(-0.6304335) ... Xout[15) + (float)(-O.69396967) * Xout[16] +
(float)(-O.61044341) ... Xout[17) + (float)(0.88602322) * Xout[18) +
(float)(0.1l514997) * Xoot[19] + (float)(0.55787128) .. Xout[20] +
(float)(0.40139416) .. Xout[2I1 + (float)(-O.97742152) .. Xout[22j +
(float)(-1.0412339) ". Xout[23j + (float)(0.39499709) .. Xout[24j +
(float)(1.2295721) .. Xout[25) + (float)(O.l7401868) ". Xoot[26) +
(float)(OA7933024) .. Xout[27] + (float)(0.38328195) * Xout[28] +
(float)(2.1356871) * Xout[29) + (float)(0.0079797367) * Xout[30) +
(float)(-1.l368124) ". Xout[31) + (float)(0.68952698) * Xout[32) +
(float)(0.045440998) .. Xout[33) + (float)(-O.049017463) ". Xout[34] +
(float)(0.96961218) ". Xout[35] + (float)(0.698246) .. Xout[36j +
(float)(-0.59503067) * Xout[37) + (float)(0.63887215) ... Xout[38] +
(float)(-O.7319122) ... Xout[39) + (float)(OA2402995) .. Xout[40] +
(float)(-0.368388 15) .. Xout[41] + (float)(-O.14430378) * Xoot[42] +
(float)(0.022293054) * Xout[43] + (float)(OA923 1437) ". Xout[44] +
(float)(-O.028518299) .. Xout[45j + (float)(-O.7461279) .. Xoot[46) +
(float)(-0.64732462) * Xout[47) + (float)(-O.66799039) * Xout[48) +
(float)(-0.679l2275) ". Xout[49];

Xout[l09) = 1.0/ (1.0 + exp(-Xout[109) »;
/* Generating code for PE 11 in layer 3 */
Xout[108] = (float)(0.65389645) + (float)(0.33503312) .. Xout[2] +

(float)(-0.089007258) * Xout[3) + (float)(0.10890045) .. Xout[4] +
(float)(-1.3216935) .. Xout[5] + (float)(-O.12574467) .. Xout[6) +
(float)(-O.1l352976) .. Xout[7] + (float)(0.1747409) .. Xout[8] +
(float)(-O.10143614) .. Xout[9) + (float)(0.15215366) * Xout[lO] +
(float)(-O.14394636) * Xout[ll] + (float)(0.060874913) .. Xout[12] +
(float)(0.61284304) .. Xout[13] + (float)(OA5705763) .. Xout[l4] +
(float)(OAl922095) * Xout[l5) + (float)(0.31419244) .. Xout[l61 +
(float) (OA 1 155437) * Xout[17) + (float)(0.17697504) .. Xout[18] +
(float)(-1.0042534) ". Xout[l9) + (float)(-O.01706785) .. Xout[20) +
(float)(-O.81615114) * Xout[21] + (float)(OA1915947)" Xout[22j +
(float)(-0.695%94) .. Xout[23) + (float)(-O.40278295) ". Xout[24] +
(float)(0.72472626) .. Xout[25] + (float)(0.24050766) .. Xout[26] +
(float)(-O.38085449) * Xout[27] + (float)(-O.54467082) .. Xout[28) +
(float)(0.130595) * Xout[29] + (float)(-1.5 171425) .. Xout[30] +
(float)(-O.26581243) * Xout[31) + (float)(-2.0576243) ... Xout[32j +
(float)(0.55165535) * Xout[33] + (float)(-O.59858763) .. Xout[34) +
(float)(-O.25994617) * Xout[35] + (float)(-1.l683228) .. Xout[36] +
(float)(0.5564127) * Xout[37] + (float)(-0.71469492) ". Xout[38] +
(float)(-0.35802168) ". Xout[39) + (float)(-OA8882803) * Xoot[40] +
(float)(1.3641639) .. Xout[41] + (float)(0.46255839) .. Xout[42) +
(float)(-0.65269339) .. Xout[43) + (float)(-O.51 163357) .. Xoot[44) +
(float)(1.l725081) * Xout[45] + (float)(0.31346831) .. Xout[46) +
(float)(0.28724936) ... Xout[47] + (float)(0.41426948) * Xout[48] +
(float)(0.31229255) * Xout[49];

Xout[108) = 1.0 I (1.0 + exp(-Xout[108] »;
1* Generating code for PE 0 in layer 4 */
Xout[60] = (float)(-1.1271948) + (float)(-O.81842512) .. Xout[50] +

(float)(-1.3834889) * Xout[51] + (float)(-O.022%5293) .. Xoot[52] +

32

(float)(0.81243747) ... Xout[53) + (float)(0.38154218) .. Xout[54] +
(float)(0.90772903) ... Xout[55] + (float)(-O.72471118) * Xout[56] +
(float)(-O.30400932) * Xout[57] + (float)(0.58435428) .. Xout[58j +
(float)(-0.29048774) ". Xout[59j + (float)(OA732 1 105) .. Xout[108] +

(float)(1.3796418) " Xout[I09];
Xout[60] = 1.0 I (1.0 + exp(-Xout[60] »;
/* Generating code for PE 1 in layer 4 * /
Xout[61] = (float)(0.99051261) + (float)(-O.30540881) .. Xout[50j +

(float)(0.90528l54) * Xout[51] + (float)(0.78356338) .. Xout[52] +
(float)(-2.260759 I) * Xout[53j + (float)(-3.1666543) .. Xout[54] +
(float)(-0.44249922) .. Xout!55j + (float)(-O.23646095) .. Xout[56j +
(float)(2.5246212) .. Xout[57J + (float)(-0.91401523) .. Xout[58] +
(float)(1.209l639) .. Xout[59] + (float)(-1.7077878) .. Xout[l08j +
(float)(1.0161073) .. Xout[1091;

Xout[6lj = 1.0 I (1.0 + exp(-Xout[61j »;
1* Generating code for PE 2 in layer 4 "'1
Xout[62] = (float)(0.45626l8l) + (float)(1.l30173) .. Xout[501 +

(float)(-1.70732l3) .. Xout[51j + (float)(-1.I245573) .. Xout[52] +
(float)(0.89064527) .. Xout[53] + (float)(1.4729378) .. Xout[54] +
(float)(-0.5808937) .. Xout[55j + (float)(0.19245362) .. Xout[56j +
(float)(-3.3339746) .. Xout[57] + (float)(-1.4942347) .. Xout[58] +
(float)(-O.745l82l6)" Xout[59] + (float)(0.08693l542)" Xout[108j +
(float)(0.800595l6) .. Xout[l09];

Xout[62j = 1.0 I (1.0 + exp(-Xout[621));

/* Generating code for PE 3 in layer 4 */
Xout[631 = (float)(-1.9432629) + (float)(-O.30953941) * Xout[501 +

(float)(1.2693883) * Xout[51J + (float)(0.767l9898) * Xout[52] +
(float)(-0.378l9272) * Xout[531 + (float)(-0.45898786) * Xout[541 +
(float)(-1.3339252) .. Xout[55j + (float)(-0.26667818) * Xout[56] +
(float)(1.8682129) * Xout[57] + (float)(1.8805428) .. Xout[581 +
(float)(0.49274552) .. Xout[591 + (float)(0.014423536) .. Xout[l08j +
(float)(0.73427594) * Xout[1091;

Xout[63] = 1.0/ (1.0 + exp(-Xout[63j));

/* Generating code for PE 4 in layer 4 */
Xout[64] = (float)(2.0l6343l) + (float)(0.38312757)" Xout[50j +

(float)(0.05l329836) .. Xout[511 + (float)(0.OO44544959) .. Xout[52] +
(float)(-O.31182596)" Xout[53] + (float)(0.9483l932) .. Xout[54] +
(float)(-O.54690707) .. Xout[55] + (float)(-2.4414914) .. Xout[56] +
(float)(-1.4124751) .. Xout[57j + (float)(-0.50987464) .. Xout[58] +
(float)(-1.7826247) .. Xout[59] + (float)(0.334l85) .. Xout[108j +
(float)(-I.4672284) .. Xout[l09];

Xout[641 = 1.0 I (1.0 + exp(-Xout[64]));

/* Generating code for PE 5 in layer 4 "I
Xout[651 = (float)(-O.71147937) + (float)(-1.0970083) .. Xout[501 +

(float)(0.52948028) .. Xout[51] + (float)(0.223908ll) * Xout[52] +
(float)(0.47199774) .. Xout[53] + (float)(-O.25515306) .. Xout[54] +
(float)(-O.15084545) .. Xout[551 + (float)(-O.02536888) .. Xout[56] +
(float)(-O.22640531) .. Xout[57] + (float)(2.6865695) .. Xout[58] +
(float)(0.34l29471) * Xout[59] + (float)(-O.64093232) .. Xout[108] +
(float)(-2.070827) * Xout[109];

Xout[651 = 1.0 I (1.0 + exp(-Xout[65] »;
/" Generating code for PE 6 in layer 4 */
Xout[661 = (float)(1.6l43047) + (float)(0.81114674) .. Xout[50] +

(float)(-O.56400937) .. Xout[51] + (float)(-O.21637194) * Xout[52] +
(float)(-OJ)98756105) .. Xout[53] + (float)(0.81337875) *' Xout[54] +
(float)(-1.0847054) .. Xout[55] + (float)(-0.4039582) * Xout[56] +
(float)(-1.8428776) *' Xout[57] + (float)(-1.501519) *' Xout[58] +
(float)(-O.77188599) .. Xout[59] + (float)(-O.4604736) .. Xout[108j +
(float)(0.35490516) * Xout[l09];

Xout[66] = 1.0/ (1.0 + exp(-Xout[66] »;
/* Generating code for PE 7 in layer 4 "'1
Xout[67] = (float)(-2.5193746) + (float)(-O.71139127) * Xout[50] +

(float)(0.5517l955)" Xout[5l] + (float)(0.137l9322) * Xout[52] +
(float)(-0.23672403) * Xout[53] + (float)(-O.17397298) * Xout[54] +
(float)(-O.47456336) ... Xout[55] + (float)(-O.12127858) .. Xout[56] +
(float)(1.3360059) * Xout[57] + (float)(1.7202868) .. Xout[58] +
(float)(0.55l 10395) ... Xout[591 + (float)(0.77017l82) *' Xout[108] +
(float)(l.5245388) ... Xout[l09];

Xout[67] = 1.0 I (1.0 + exp(-Xout[67] »;
/* Generating code for PE 8 in layer 4 *1
Xout[68] = (float)(1.5630575) + (float)(-O.23494618) * Xout[50] +

(float)(-2.0493004) * Xout[51] + (float)(-1.3465009) * Xout[52] +
(float)(-2.3500924) ... Xout[53] + (float)(0.46151495) *' Xout[54] +
(float)(0.5551433) ... Xout[55] + (float)(1.235092) ... Xout[56j +
(float)(0.45352343) .. Xout[57] + (float)(1.8041%8) .. Xout[581 +
(float)(-1.7768726) .. Xout[59] + (float)(0.35839537) ... Xout[108] +
(float)(-1.3124775) *' Xout[l09];

Xout[681 = 1.0 I (1.0 + exp(-Xout[681));

/* Generating code for PE 9 in layer 4 */

33

Xout[69] = (float)(0.34848964) + (float)(-2.2175453) " Xout[50) +
(float)(0.080968 171) .. Xout[51) + (float)(-1.7334762) .. Xout[52] +
(float)(-0.38086399) " Xout[53) + (float)(-O.016748372) .. Xout[54] +
(float) (-0. 3 1 29648) .. Xout[55) + (float)(-O.96740031) .. Xout[56j +
(float)(-O.77607948) .. Xout[57) + (float)(2.7698929) .. Xout[58] +
(float)(0.14756824) .. Xout[59j + (float)(0.014937705) .. Xout[108] +
(float)(0.58674985) .. Xout[109];

Xout[69] = 1.0, (1.0 + exp(-Xout{691 »;
/* Generating code for PE 10 in layer 4 '"
Xout[70] = (float)(1.293 1837) + (float)(1.l293036) • Xout[50j +

(float)(-1.l445518)" Xout[51j + (float)(1.3071111)" Xout[52) +
(float)(-1.5132684) .. Xout[53] + (float)(0.3632627l) .. Xout[54] +
(float)(-1.8802327) .. Xout[55J + (float)(2.5150167) .. Xout[56) +
(float)(-O.80144083) .. Xout[57j + (floatj!-llA9410975) .. Xout[58] +
(float)(-2.1637807) .. Xout[59) + (float)(-O.76418853) .. Xout[108j +
(float)(-0.62683 147) .. Xout[109j;

Xout[70j = 1.0/ (l.0 + exp(-Xout[70j »;
/* Generating code for PE 11 in layer 4 .. /
Xout[71) = (float)(-3.0252392) + (float)(-O.30334255) .. Xout[50J +

(float)(0.73941272) * Xout[51) + (float)(-O.030317988) * Xout[52) +
(float)(0.19043158) * Xout[53j + (float)(0.3451598) .. XoutL54] +
(float)(-O.5137074) * Xout[55] + (float)(-1.0549057) * Xout[56] +
(float)(0.35269666) * Xout[57j + (float)(0.54933143) * Xout[58) +
(float)(1.l20172) * Xout[59) + (float)(0.94736534) " Xout[108) +
(float)(2.381901) * Xout[l09j;

Xout[71) = l.0 / (l.0 + exp(-Xout[71] »;
'* Generating code for PE 12 in layer 4 *'
Xout[72] = (float)(-1.6351501) + (float)(-O.035657734) .. Xout[50) +

(float)(0.60131836) .. Xout[51) + (float)(-1.0153981) .. Xout[52] +
(float)(-0.96337998) * Xout[53] + (float)(2.0109179) .. Xout[54) +
(float)(-2.7939463) .. Xout[55j + (float)(-1.1227628) * Xout[56] +
(float)(l.077229) * Xout[57) + (float)(0.41827017) .. Xout[58) +
(float)(1.l275314) .. Xout(59) + (float)(-2.0361631) .. Xout[108) +
(float)(0.6591363) .. Xout[l09);

Xout[72] = l.0 I (l.0 + exp(-Xout[72]));

1* Generating code for PE 13 in layer 4 *1
Xout[73j = (float)(-O.83080274) + (float)(1.2367696) .. Xout[50] +

(float)(1.l079992) .. Xout[5l) + (float)(-2.0837095) .. Xout(52) +
(float)(O.lOO90644) .. Xout[53) + (float)(1.l603016) * Xout[54) +
(float)(-2.6968729) * Xout[55) + (float)(-l.8496203) * Xout[56) +
(floal)(l.2509276) * Xout[57) + (float)(-0.054938078) * Xout[58) +
(float)(l.6586423) * Xout[59) + (float)(-0.22862975) * XOUl[108] +
(float)(-0.45432207) * Xout[109];

Xout[73] = l.0 / (l.0 + exp(-Xout[73] »;
/* Generating code for PE 14 in layer 4 */
Xout[74) = (float)(-1.483 1536) + (float)(0.89368427) * Xout[50] +

(float)(0.29253733) * Xout[51) + (float)(0.84712416) * Xout[52] +
(float)(-3.1981816) * Xout[53] + (float)(3.4082227) * Xout[54) +
(float)(2.4743552) * Xout[55) + (float)(-0.061327793) .. Xout[56] +
(float)(-3.1025629) * Xout[57) + (float)(l.3641064) * Xout[58] +
(float)(0.041832387) * Xout[59] + (float)(-2.9901614) * Xout[108) +
(float)(0.45638043) ... Xout[109):

Xout[74J = 1.0 I (l.0 + exp(-Xout[74] »;
/* Generating code for PE 15 in layer 4 */
Xout[75) = (float)(1.l997241) + (float)(2.1578417) * Xout[50) +

(float) (-0. 8(038494) * Xout[51) + (float)(0.24383093) * Xout[52) +
(float)(-O.84625733) ... Xout[53) + (float)(-5.0739422) * Xout[54] +
(float)(-l.9571033) ... Xout[55] + (float)(-l.2238055) .. Xout[56) +
(float)(-l.0995946) * Xout[57] + (float)(0.66278946) .. Xout[58) +
(float)(2.556469) * Xout[59] + (float)(1.4499192) .. Xout[108) +
(float)(2.0539217) * Xout[l09);

Xout[75) = 1.0 I (1.0 + exp(-Xout[75) »;
/* Generating code for PE 16 in layer 4 ... /
Xout[76) = (float)(-O.31402117) + (float)(-O.56115401) * Xout[50] +

(float)(-5.0220456) .. Xout[51j + (float)(1.0307035) * Xout[52) +
(float)(0.79192179) * Xout[53) + (float)(0.92074883) .. Xout[54j +
(float)(O. 149 1286) .. Xout[55) + (float)(-l.0890059) * Xout[56) +
(float)(l.3366988) .. Xout[57) + (float)(0.42141479) * Xout[58) +
(float)(1.5278354) * Xout[59] + (float)(-0.28532648) * Xout[108) +
(float)(l.0869534) * Xout[l09];

Xout[76) = l.0 / (1.0 + exp(-Xout[76) i);

/* Generating code for PE 17 in layer 4 */
Xout[77) = (float)(-O.4453508) + (float)(-O.48765531) * Xout[50) +

(float)(1.4618384) * Xout[51] + (float)(l.0828806) * Xout[52] +
(float)(-l.618272l) * Xout[53] + (float)(-2.4736428) ,. Xout[54] +
(float)(-O.64924866) .. Xout[55J + (float)(-O.34230852) .. Xout[56] +

34

(float)(2.3691278) .. Xout[57j + (float)(-0.24325132) .. Xout[58] +
(float)(-O.15207697) .. Xout[59] + (float)(-1.074677I) .. Xout[108] +
(fioat)(1.638507) .. Xout[109];

Xout[77] = 1.0 I (1.0 + exp(-Xout[77]));

/* Generating code for PE 18 in layer 4 *1
Xout[78] = (float)(-0.0093993209) + (float)(1.2652856) .. Xout[50J +

ffioat)(-0.8570205) .. Xout[511 + (float)(-1.1121503) .. Xout[52l +
(fioat)(1.623265) .. Xout[531 + (float)(0.65648186) .. Xout[54] +
ffioat)(-0.15524225) .. Xoutl55] + (float)(0.32887942) .. Xout[56] +
(float)(-2.4795859) .. Xout[57] + (float)(-1.4936676)" Xout[58] +
(float)(-O.51489735) .. Xout[59] + (float)(-O.5141881l) * Xout[I08] +
ffioat)(0.96810508) .. Xout[l09];

Xout[78] = 1.0 I (1.0 + exp(-Xout[781 »;
/* Generating code for PE 19 in layer 4 */
Xout[79] = (float)(-0.77337676) + (float)(-OA4863424) .. Xout[50j +

(float)(0.65776843) .. Xout[51] + (float)(0.95053434) .. Xout[52] +
(float)(-0.93394405) .. Xout[53] + (float)(0.06248771) .. Xout[54] +
(float)(-1.4685494) * Xout[55] + (float)(-O.40164199) .. Xout[56] +
(float)(1.338447I) .. Xout[57] + (float)(1.324085) .. Xout[58] +
(float)(-O.1l933818) .. Xout[59] + (float)(0.5I301754) .. Xout[l08] +
(float)(0.58442467) * Xout[109];

Xout[79] = 1.0 I (1.0 + exp(-Xout[79]));

/* Generating code for PE 20 in layer 4 */
Xout[80j = (float)(3.I37306) + (float)(-O.95458806) .. Xout[50] +

(float)(0.18669866) * Xout[51] + (float)(0.43128395) .. Xout[52] +
(float)(0.068867706) .. Xout[53] + (float)(-0.29709685) .. Xout[54] +
(float)(-O.89955783) .. Xout[55j + (float)(-2.2190347) .. Xout[56] +
(float)(-0.83802128) .. Xout[57] + (float)(-O.25351721) .. Xout[58] +
(float)(-3.283 1914) .. Xout[59] + (float)(-O.67998296) .. Xout[108j +
(float) (-0. 1(428108) .. Xout[l09];

Xout[80] = 1.0 I (1.0 + exp(-Xout[80]));

/* Generating code for PE 21 in layer 4 "I
Xout[81] = (float)(-1.3307847) + (float)(-O.68005109) .. Xout[50] +

(float)(O.I03 18635) * Xout[5l) + (float)(1.949532) .. Xout[52] +
(float)(-0.10627366) .. Xout[53] + (float)(0.11747685) .. Xout[541 +
(float)(-O.75109428) .. Xout[55] + (float)(0.26546109) .. Xout[56] +
(float)(-0.1810772) .. Xout[57] + (float)(2.4917076) .. Xout[58] +
(float)(-0.46360749) .. Xout[59] + (float)(0.051633526) .. Xout[108] +
(float)(-1.8230093) * Xout[l09];

Xout[8 I] = 1.0 / (1.0 + exp(-Xout[81]));

/* Generating code for PE 22 in layer 4 .. /
Xout[82] = (float)(2.63 15839) + (float)(0.7565732) .. Xout[50] +

(float)(-0.95833892) .. Xout[51] + (float)(0.19239159) .. Xout[52] +
(float) (0. 19948715) .. Xout[53j + (float)(0.2337243) .. Xout[54] +
(float)(-1.3877039) .. Xout[55] + (float)(0.15337388) .. Xout[56] +
(float)(-1.258%13) .. Xout[57] + (float)(-2.2221169)" Xout[58] +
(float)(-1.l016883) .. Xout[59j + (float)(-1.4852508) * Xout[108j +
(float)(1.l00075) * Xout[I09];

Xout[82] = 1.0/ (1.0 + exp(-Xout[82] »;
1* Generating code for PE 23 in layer 4 */
Xout[83] = (float)(-1.8382864) + (float)(-O.34 119 I 8) .. Xout[50] +

(float)(-O.025781045) * Xout[51] + (float)(0.31228745) .. Xout[52] +
(float)(-O.991l9544) .. Xout[53] + (float)(0.82920599) .. Xout[54j +
(float)(-0.65316337) * Xout[55j + (float)(-0.50539988) * Xout[56] +
(float)(0.81932914) .. Xout[57] + (float)(1.2416919) .. Xout[58j +
(float)(0.86348158) .. Xout[59] + (float)(IAI43608) .. Xout[108] +
(float)(1. 1326553) .. Xout[l09];

Xout[83j = 1.0/ (1.0 + exp(-Xout[83] »;
/* Generating code for PE 24 in layer 4 "/
Xout[84] = (float)(0.300480I3) + (float)(0.54728049) .. Xout[50j +

(float)(-l.4993926) .. Xout[51] + (float)(-2.0250094) * Xout[52] +
(float)(-1.6045873) .. Xout[53] + (float)(0.55398297) * Xout[54] +
(float)(1.2700931) .. Xout[55] + (float)(0.87798905) * Xout[56] +
(float)(O.62644106) .. Xout[57) + (float)(1.825107) .. Xout[58) +
(float)(-1.9769086) .. Xout[59] + (float)(0.58303523) .. Xout[l08] +
(float)(-0.76937056) .. Xout[l09];

Xout[841 = 1.0 I (1.0 + exp(-Xout[84] »;
/* Generating code for PE 25 in layer 4 */
Xout[85] = (float)(2.2584329) + (float)(-1.8088914) * Xout[50] +

(float)(-1.322167) .. Xout[51] + (float)(-O.23244019) * Xout[52] +
(float)(-1.7197626) " Xout[53] + (float)(0.17660409) .. Xout[54] +
(float)(-1.2876936) .. Xout[55] + (float)(-O.76772326) .. Xout[56] +
(float)(-O.6087507) .. Xout[57] + (float)(l.073369) .. Xout[58] +
(float)(1.8392125) * Xout[59j + (float)(-0.72801536) .. Xout[108] +
(float)(-O.69041973) * Xout[I09];

Xout[85] = l.0 / (l.0 + exp(-Xout[85]));

35

/* Generating code for PE 26 in layer 4 *1
Xout[86] = (float)(-0.12115224) + (float)(1.2860204) '" Xout[50] +

(float)(-0.68727338) * Xout[51j + (float)(0.17316988) * Xout[52] +
(float)(-0.262479 19) " Xout[53) + (float)(0.10292512) * Xout[S4J +
(float)(-D.4160S964) '" Xout[5S) + (float)(1.9672805) .. Xout[56] +
(float)(0.069597267) .. Xout[S7] + (float)(-D.056802392) * Xout[58j +
(float)(-1.5673718) '" Xout[S91 + (float)(-D.77722275) .. Xout[108] +
(float)(-0.46560061) * Xout!109];

Xout[86] = 1.0 I (l.0 + exp(-Xout[86] »;
/* Generating code for PE 27 in layer 4 */
Xout[87] = (float) (-2.1286206) + (float)(0.038134307) '" Xout[50j +

(float)(0.87354302) * Xout[SI] + (float)(0.50962937) * Xout[52] +
(float)(-D.7644468S) * Xout[53] + (float)(0.69365746) * Xout[54J +
(float)(-1.l442401) * Xout[55] + (float)(-D.95 135128) * Xout[56] +
(float)(-D.2492 1077) * Xout[57] + (float)(0.21229799) " Xout[58] +
(float)(0.87801582) * Xout[59] + (float)(1.2346022) * Xout[108] +
(float)(1.53S5805) * Xout[l09];

Xout[87] = 1.0 1 (1.0 + exp(-Xout[87] »;
/'" Generating code for PE 28 in layer 4 *1
Xout[88] = (float)(-2.4577863e-005) + (float)(1.2992728e-005) * Xout[58];
Xout[88] = 1.0 I (1.0 + exp(-Xout[88]));

/'" Generating code for PE 29 in layer 4 */
Xout[89J = (float)(-2.8107917e-005) + (float)(1.3743494e-005) * Xout[53j

+ (float)(1.041777le-005) " Xout(55);
Xout[89] = 1.0/ (1.0 + exp(-Xout[89]));

/* Generating code for PE 30 in layer 4 *1
Xout[90] = (float)(0.OOOI893545) + (float)(-2.9530063e-005) * Xout[50] +

(float)(1.4433194e-005) * Xout[51j + (float)(2.3297041e-OOS) * Xout[52]
+ (float)(-7.4419615e-005) " Xout[S3] +

(float)(-S.89720S5e-005) " Xout[54] +
(float)(-3.5120465e-005) " Xout[55] +
(float)(-2.8683868e-005) .. Xout[56] +
(float)(3.016965Ie-005)'' Xout[57] + (float)(-D.OOO10326075) " Xout[58]
+ (float)(-3.9426686e-005) " Xout[59] +

(float)(-5.0844203e-005) .. Xout[108j +
(float)(1.6017189e-005) " Xout[I09];

Xout[90] = 1.0 / (1.0 + exp(-Xout[90j »;
/* Generating code for PE 31 in layer 4 "/
Xout[91] = (float)(0.OOO21251041) + (float)(-5.3825112e-005) " Xout[50] +

(float)(-4.2433396e-005) * Xout[51] +
(float)(4.0391315e-005) .. Xout[52] + (float)(-0.OOOl0584209) .. Xout[53]
+ (float)(1.0023429e-005) .. Xout[54] +

(float)(-9.2874398e-OOS) .. Xout[55] +
(float)(-4.I 11 6495e-005) .. Xout[57] +
(float)(-6.103763e-005) * Xout[58j +
(float)(-2.8993813e-005) " Xout[59] +
(float)(-1.l19095e-OOS) " Xout[l08] +
(float)(-6.2168881e-005) * Xout[l09];

Xout[91] = 1.0/ (1.0 + exp(-Xout[91] »;
/* Generating code for PE 32 in layer 4 * /
Xout[92] = (float)(0.2696963S) + (float)(-D.30974364) .. Xout[50] +

(float)(-2.517801) * Xout[51] + (float)(0.28506058) .. Xout[52] +
(float)(0.32746753) * Xout[53] + (float)(1.l62149) .. Xout[54] +
(float)(-O.89783609) .. Xout[55] + (float)(-1.0002921) * Xout[56] +
(float)(-D.3454769) .. Xout[57] + (float)(0.063768186) .. Xout[58] +
(float)(1.1734737) * Xout[59] + (float)(0.34612843) * Xout[108] +
(float)(0.069671661) " Xout[109];

Xout[92] = 1.0 I (1.0 + exp(-Xout[92]));

/* Generating code for PE 33 in layer 4 */
Xout[93] = (float)(0.97986376) + (float)(-1.5181413) " Xout[50] +

(float)(0.61071473) " Xout[51] + (float)(1.8992558) * Xout[52] +
(float)(-2.6065402) .. Xout[53] + (float)(-1.5113795) " Xout[54j +
(float)(-D.6471867) .. Xout[5S] + (float)(0.02046635) * Xout[56] +
(float)(2.3483627) .. Xout[S7] + (float)(0.057492416) '" Xout[S8] +
(float)(-D.16072766) .. Xout[59] + (float)(-O.43656364) .. Xout[I08] +
(float)(-1.1315476)" Xout[l09];

Xout[93] = 1.0 I (1.0 + exp(-Xout[93] »;
/" Generating code for PE 34 in layer 4 */
Xout[94] = (float)(-1.0722711) + (float)(1.504473l) .. Xout[50] +

(float)(-D.S833627) '" Xout[Sl] + (float)(-O.9S837814) .. Xout[S2] +
(float)(1.9107828) .. Xout[53] + (float)(O.091979191) .. Xout[54] +
(float)(-D.098079793) .. Xout[55] + (float)(0.54660648) " Xout[56] +
(float)(-2.2612064) .. Xout[57] + (float)(-1.308275) .. Xout[58] +
(float)(0.016765656) .. Xout[59] + (float)(-D.920S6769) .. Xout[108] +
(float)(1.7252015) .. Xout[I09]:

Xout[94] = 1.0/ (1.0 + exp(-Xout[94] »;

36

1* Generating code for PE 35 in layer 4 ,,/
Xout[95] = (float)(0.020033343) + (float)(-0.94125074) .. Xout[50] +

(float)(0.27962023) .. Xout[51] + Xout[52] +
(float)(-1.5500464) .. Xout[53] + (float)(0.65965164) .. Xout[54] +
(float)(-1.8283548) " Xout[55] + (float)(-O.56391716) .. Xout[56] +
(float)(0.76049888) .. Xout[57] + (float)(L5675797) .. Xout[58] +
(float)(-O.023777883) " Xom[59j + (float)(1.l918838) " Xout[108] +
(float)(-0.67139995) .. Xout[1091;

Xout[95J = 1.0 I (1.0 + exp(-Xom[95j »;
/* Generating code for PE 36 In layer 4 */
Xout[96] = (float)(1.3026482) + (float)(-1.5718399) .. Xout[50j +

(float)(-O.84302801) .. Xout[5lj + (float)(0.98278356) * Xout[52] +
(float)(1.6147796) * Xout[53] + (float)(-O.61733937) * Xout[54] +
(float)(-0.039766923) .. Xout[55] + (float)(-L5104465) .. Xout[56] +
(float)(1.l94056) " Xout[57) + (float)(-O.77516675) * Xout[58] +
(float)(-3.2540019) .. Xout[59] + (float)(-L3176019) .. Xout[108] +
(float)(l.7704582) .. Xout[109];

Xout[96] = l.0 / (l.0 + exp(-Xout[96] »;
/* Generating code for PE 37 in layer 4 */
Xout[97] = (float)(-O.50115377) + (float)(-1.2574297) * Xout[50] +

(float)(0.69005173) .. Xout[51] + (float)(0.97507006) .. Xout[52] +
(float)(-O.1685814) .. Xout[53] + (float)(-0.2900(422) * Xout(54) +
(float)(-O.19388328)" Xout[55] + (float}(-O.39527857)" Xout[56] +
(float)(-O.17465004) .. Xout[57] + (float)(2.2017305) .. Xout[58] +
(float)(-0.97406936) .. Xout[59] + (float)(0.15925157) .. Xout[108] +
(float)(-1.5618716) * Xout[l09];

Xout[97] = 1.0/ (1.0 + exp(-Xout[97] »;
/* Generating code for PE 38 in layer 4 */
Xout[98] = (float)(1.5504092) + (float) (0. 13 156244) * Xout[50] +

(float)(-O.45470008) * Xout[51] + (float)(-O.03258229) * Xout[52] +
(float) (0. 92437667) * Xout[53J + (float)(-O.l7690143) * Xout[54] +
(float)(-O.6620695) * Xout[55] + (float)(0.23948748) .. Xout[56] +
(float)(-O.67032462) * Xout[57] + (float)(-2.1200576) .. Xout[58] +
(float)(-0.64275318) * Xout[59] + (float)(-1.3591479) .. Xout[108] +
(float)(l.5086142) * Xout[l09];

Xout[98] = 1.0/ (l.0 + exp(-Xout[98] »;
1* Generating code for PE 39 in layer 4 */
Xout[99] = (float)(-1.3422076) + (float)(-O.19107366) .. Xout[50] +

(float)(-0.84976107) .. Xout[51] + (float)(0.90883416) * Xout[52] +
(float)(-2.1653829) * Xout[53j + (float)(1.7798616) * Xout[54] +
(float)(-L4378302) " Xout[55] + (float){-O.54379606) " Xout[56] +
(float)(-0.33565909) .. Xout[57] + (float)(l.5350535) .. Xout[58] +
(float)(1.0401212) .. Xout[59] + (float)(2.332197) .. Xout[108] +
(float)(-0.480547l) * Xout[l09];

Xout[99] = l.0 / (l.0 + exp(-Xout[99] »;
/* Generating code for PE 40 in layer 4 "/
Xout[lOO] = (float)(-O.17228021) + (float)(l.0267595) * Xout[50] +

(float)(-O.32913649) * Xout[51] + (float)(-2.3633208) " Xout[52] +
(float)(-O.83040869) " Xout[53] + (float)(-OA5237222) * Xout[54] +
(float)(l.9302666) * Xout[55] + (float)(0.21804175) .. Xout[56] +
(float)(0.37375265) .. Xout[57] + (float)(2.205935) .. Xout[58] +
(float)(-2.0602682) .. Xout[59] + (float)(0.040478695) .. Xout[108] +
(float)(0.24739593) .. Xout[l09);

Xout[lOO] = l.0' (l.0 + exp(-Xout[lOO] »;
/* Generating code for PE 41 in layer 4 .. /
Xout[IOIl = (float)(l.2131093) + (float)(-1.l169457) .. Xout[50] +

(float)(-O.42688763) * Xout[51] + (float)(-O.24864078) .. Xout[52] +
(float)(-1.l827255) * Xout[53] + (float)(0.64675373) * Xout[54] +
(float)(-1.2052728) ,.. Xout[55] + (float)(-0.82416272) " Xout[56] +
(float)(-O.057926528) * Xout[57] + (float)(0.4857721) * Xout[58] +
(float)(0.5657509) .. Xout[59] + (float)(0.10218118) ,.. Xout[108] +
(float)(-l.5153761) " Xout[l09];

Xout[lOl] = 1.0/ (l.0 + exp(-Xout[lOl] »;
/* Generating code for PE 42 in layer 4 '"
Xout[l02j = (float)(-1.766288) + (float)(23454351) * Xout[50] +

(float)(0.24242234) .. Xout[51] + (float)(-O.25429481) * Xout[52j +
(float)(0.739815) * Xout[53] + (float)(-0.69349694) " Xout[54] +
(float)(L434274)'" Xout[55] + (float)(1.3433 13 1) .. Xout[56] +
(float)(0.66296631) * Xout[57] + (float)(0.64785177) "Xout[58] +
(float)(-1.7816589) ,.. Xout[59] + (float)(-O.80198276) * Xout[1081 +
(float)(0.43305841) ,.. Xout[I09];

Xout[I02] = 1.0/ (l.0 + exp(-Xout[102] »;
/* Generating code for PE 43 in layer 4 */
Xout[103] = (float)(-OA5019552) + (float)(-OA0654105) ,.. Xout[50j +

(float)(0.32625028) ,.. Xout[511 + (float)(0.6652000S) .. Xout[52] +
(float)(-l.496930S) " Xout[53] + (float)(1.3141861) * Xout[54] +

37

(float)(-1.9023379) " Xout[55j + (float)(-1.0899962) .. Xout[56] +
(float)(-1.l103041) * Xout[57] + (float)(0.437 16505) .. Xout[58] +
(float)(0.47580844) * Xout[59] + (float)(1.3565735) * Xout[108] +
(float)(0.12094656) .. Xout[109];

Xout[103j = 1.0 I (1.0 + exp(-Xout{l03j));

/* Generating code for PE 44 in layer 4 */
Xout[I04] = (float)(1.0193326e-005) .. Xout[511 +

(float)(-1.234505e-005) .. Xout[54j + (floatJ(1.l479333e-005) " Xout[55j
+ (float)(1.2623273e-005) * Xout[57] +

(float)(l.3918387e-005) " Xout[l09j;
Xout[l04] = 1.0/ (1.0 + exp(-Xout(104] »;
!* Generating code for PE 45 in layer 4 */
Xout[105j = (float)(-0.00044823 103) + (floatj(9.0591944e-005) * Xout[50j

+ (float)(1.8353496e-OOS) .. Xout[51j +
(float)(-7.18 I 2625e-O(5) "Xout!52j + (float)(0.00018278712)" Xout[S3]
+ (float)(6.3663S0ge-OOS) * Xout[54j +

(float)(0.00014655043) * Xout[5S] + (float)(2.7393486e-OOS) * Xout[56]
+ (float)(0.000197S622) * Xout[58j +

(float)(7.13182S3e-005) * Xout[59] +
(float)(9.5640149e-005) * Xout[108] +
(float)(4.9502469e-005) .. Xout[1091;

Xout[105] = 1.0 I (1.0 + exp(-Xout[lOS]));

/* Generating code for PE 46 in layer 4 *1
Xout[I06] = (float)(0.00023040116) + (float)(-S.2382205e-OOS) * Xout[SO]

+ (float)(-2.9611108e-OOS) * Xout[5lj +
(float)(4.168S456e-005) " Xout[52] + (float)(-O.00010552297) * Xout[53j
+ (float)(-1.0615638e-005) " Xout[54] +

(float)(-8.3810912e-005) * Xout[55J +
(float)(-2.4085066e-005) * Xout[57] +
(float)(-8.1487422e-005) * Xout[58J +
(float)(-3.4434139e-005) * Xout[S9j +
(float)(-2.685517e-005) * Xout[108] +
(float)(-5.0365397e-005) .. Xout[I09];

Xout[I06] = 1.0 I (1.0 + exp(-Xout[106J »;
/* Generating code for PE 47 in layer 4 */
Xout[I07] = (float)(-3.491S927e-005) + (float)(1.6623082e-OOS) * Xout[50j

+ (float)(2.2298404e-OOS) .. Xout[511 +
(float)(-1.0412085e-005) .. Xout[52J +
(float)(2.3294422e-005) .. Xout[53J +
(float)(-2.0708705e-005) .. Xout[54j +
(float)(2.9S0329Ie-005) * Xout[5Sj + (float)(2.6054226e-005) * Xout[57]
+ (float)(2.9213143e-OOS) .. Xout[I09J;

Xout[l07J = 1.0 10.0 + exp(-Xout[107]));

/* De-scale and write output from network */
Yout[Oj = Xout[60j * (0.5) + (4.29);
Yout[lj = Xout[61j " (2.1) + (0.9S999998);
Yout[2J = Xout[62] * (0.08) + (0.029999999);
Yout[3] = Xout[63] " (5.6799984) + (28.S3OOO1);
Yout[4] = Xout[64] " (1.0S99999) + (4.3099999);
Yout[Sj = Xout[6Sj * (2.03) + (1.02);
Yout[6j = Xout[66] .. (0.OS9999999) + (O.OSOOOOOOI);
Yout[7j = Xout[67j * (S.OS99995) + (25.82);
Yout[8] = Xout[68j " (2.54) + (4.9400001);
Yout[9j = Xout[69] * (1.9300001) + (1.3);
Yout[lOj = Xout[70j .. (0.059999999) + (0.059999999);
Yout[llj = Xout[71J .. (3.460001) + (22.82);
Yout[12j = Xout[72j * (4.6799994) + (4.3000002);
Yout[13j = Xout[73j .. (2.9800003) + (2.3);
Yout[14] = Xout[74] .. (0.02) + (0.0099999998);
Yout[15] = Xout[75] .. (4.0699997) + (23.559999);
Yout[16] = Xout[76] .. (0.30000019) + (4.4099998);
Yout[17j = Xout[77] .. (2.3799999) + (0.92000002);
Yout[18] = Xout[78j * (0.089999998) + (0.029999999);
Yout[19j = Xout[79] .. (7.5799999) + (26.969999);
Yout[20] = Xout[80] * (0.96000004) + (4.3800001):
Yout[21j = Xout[81j " (1.6000001) + (1.04);
Yout[22j = Xout[82j .. (0.059999999) + (0.050000001);
Yout[23j = Xout[83j .. (5.7999992) + (24.870001);
Yout[24j = Xout[84] .. (3.25) + (5.3800001);
Yout[25j = Xout[85j .. (2.0100001) + (1.17);
Yout[26j = Xout[86j .. (0.059999999) + (0.059999999);
Yout[27] = Xout[87] .. (3.9899998) + (22.27);
Yout[28] = Xout[88];
Yout[29j = Xout[89]:
Yout[30j = Xout[90j;
Yout[31] = Xout[91];
Yout[32j = Xout[92j .. (0.31999969) + (4.3400002);
Yout[33j = Xout[93] .. (1.8200001) + (0.87);
Yout[34j = Xout[94j .. (0.099999996) + (0.029999999);

38

Youtl35] = Xout[95] .. (6.5899982) + (28.12000 I);
Yout[36] = Xout[96] .. (0.9000001) + (4.3299999);
Yout[37j = Xout[97j .. (2.03) + (1);
Yout[38] = Xout[98j .. (0.059999999) + (0.050000001);
Yout[39j = Xout[99j .. (4.8499985) + (26.120001);
Yout[40j = Xout[IOOj .. (3.79) + (5.4200001);
Yout[4lj = XoutllOlj .. (2.7800001) + (1.37);
Yout[42] = Xout[I02] .. (0.050000001) + (0.050000001);
Yout[43j = Xout[103j .. (4.6499996) + (23.700001);
Yout[44] = Xout[I04];
Yout[45] = Xout[1051:
Yout[46] = Xout[l06];
Yout[47j = Xout[l07];
return(0);

39

