Testing the safety level of a road network

Atze Dijkstra

D-2003-15
Testing the safety level of a road network

Contribution to the XXIIth PIARC World Road Congress, 19–25 October 2003, Durban, South Africa
Report documentation

Number: D-2003-15
Title: Testing the safety level of a road network
Subtitle: Contribution to the XXIIth PIARC World Road Congress, 19–25 October 2003, Durban, South Africa
Author(s): Atze Dijkstra
Project number SWOV: 41.015

Keywords: Safety, accident prevention, road network, traffic, test method, audit, evaluation (assessment), Netherlands.

Contents of the project: Description of how traffic engineering designs can be tested and evaluated on meeting the criteria and the application of the variables and features of a Sustainably-Safe road system.

Number of pages: 18 + 3
Price: € 7,50
Published by: SWOV, Leidschendam, 2004
Summary

The safest roads in a road network are motorways and local streets with traffic calming. Most of the accidents occur on the other roads, which form the larger part of the network. So for safety reasons motorized traffic should be encouraged to use motorways and should be discouraged to use local streets.

However, much traffic will (therefore) use the intermediate roads, which have high accidents figures. These intermediate roads are mostly meant for distribution (to and from areas), as well as for local access. It is very difficult to separate these two traffic functions in such a way that the roads can still be important veins in the road network while being sufficiently safe at the same time.

How can proposals for adapting these types of roads be judged on the safety consequences? Estimation of these consequences should be possible in all stages of the life cycle of a road or street (planning, design, construction, redesign, and reconstruction). A first estimation, of a qualitative nature, is made by a Road Safety Audit: it gives an expert judgement. The results of the estimation or test are more objective when a proposal is evaluated according to a set of safety requirements. These requirements aim at preventing different accident types, e.g. preventing accidents with opposing vehicles is achieved by the requirement that opposing directions should be separated physically. Tests with these sorts of requirements are currently being performed in the Netherlands. The experiences were compared to outcomes of Road Safety Audits.
Contents

1. Introduction 7

2. Sustainably-safe road network 8

3. Requirements belonging to the three principles 9
 3.1. Functionality 9
 3.2. Recognition and predictability 9
 3.3. Homogeneity 9
 3.4. Goal of the Sustainably-Safe Indicator 10

4. Design of the Sustainably-Safe Indicator 11
 4.1. Application in different design phases and in existing situations 11
 4.2. Design variables per Sustainably-Safe requirement 11
 4.3. Indicators 11
 4.3.1. Measuring and observation methods 11
 4.3.2. Operation procedure and data needed 11

5. Testing criteria and application 14
 5.1. Testing criteria 14
 5.2. The Sustainably-Safe Indicator: determine differences between package of requirements and (carried out) design 14

6. The Sustainably-Safe Indicator, road safety audit, and calculation model 15

7. Conclusions and recommendations 16

References 17

Appendix 19
1. Introduction

It is generally accepted that a journey should be made smoothly and safely. It is less clear how smoothly and how safely, and at what price. At the national level we produce some clarity by fixing goals and targets about the how and the price, but at the regional and local level there is less clarity. At the level of road networks we use traffic models to 'calculate' what the flow, accessibility, and safety are. This is, however, much more difficult at the level of road sections and crossroads. At that level, the road designer needs to transfer the goals and targets from the higher level to an actual road section or crossroads. A well nigh impossible task? As far as the contents is concerned, there are indeed many unanswered questions for every design. In practice it always comes down to yet another design that has a strongly traditional character and in which goals, wishes, and preconditions of various natures are combined. Is it possible to arrive at traffic engineering designs that, as early as in the design phase, provide a better insight in the extent to which a contribution is made to flow, accessibility, and safety?

If the answer is yes, the designer can achieve a better balance between flow, accessibility, and safety (FAS). At the same time, the designer can balance the effects of external wishes and goals not necessarily aimed at FAS, against FAS.

If the answer is no, there may be general starting points for the road section or crossroads involved, or else for a slightly higher level: the route level. The 'yes' as well as the 'no' give greater clarity about the choices and balances in a design, for the designer and for others. And that is necessary because the designer makes choices, often implicitly, during the creative process that designing just is. However, participants, joint deciders, and those responsible must be able to find out what the choices were; all inputs and outputs of the design must, during all design phases, be clear. Preferably that should be quantitative information. This information must provide sufficient sight of the consequences for all relevant safety aspects of the design to be carried out,
2. Sustainably-safe road network

In the Netherlands since 1992, we have the concept 'sustainably-safe traffic' (Koornstra et al., 1992). The main goal of a sustainably-safe road transport system is that only a fraction of the current, annual number of road accident casualties will remain. Just what such a system must look like has, been worked on during the past few years. One of the results came from a national working group of experts which has drawn up draft requirements for categorising roads on a sustainably-safe basis (CROW, 1997).

It is of great importance for a sustainably-safe traffic system that, for each of the different road categories, road users know which behaviour is required of them and which behaviour they may expect from other road users. This acquired pattern should be supported by optimising the recognizability of the road categories.

The three main concepts in a sustainably-safe traffic system are:
- functionality,
- homogeneity,
- recognizability/predictability.

The functionality of the traffic system is important to ensure that the actual use of the roads is in accordance with the intended use. This has been worked out by dividing the road network into three categories: through roads, distributor roads, and (residential) access roads. Each road or street can only have one function: for example, a distributor road may not have any direct dwelling access.

The homogeneity is intended to avoid large differences in speed, direction, and mass by separating traffic types and, if that is not possible or desirable, by making motorised traffic drive slowly.

The third principle is that of the predictability of traffic situations. The design of the road and its surroundings should encourage recognition, and therefore the predictability of the traffic situations that may occur. As a result, undesirable traffic situations can be acknowledged and avoided in good time.
3. Requirements belonging to the three principles

So-called functional requirements have been set up for each principle by the earlier mentioned national working group (CROW, 1997).

3.1. Functionality

The requirements for functionality are:
- Realisation of as many connected residential areas as possible;
- Minimum part of the journey along unsafe roads;
- Journeys as short as possible;
- Shortest and safest route should coincide.
Sustainably-safe makes demands on functionality which require individual road user to choose a route that is safe, also for others. So a journey may not go through a residential area. Driving along an unsafe road for too long is also not desirable. A large residential area is safe for internal traffic; one prevents too many crossings-over by slow traffic of the surrounding through roads. An area that is too large leads to too much internal traffic; one that is too small leads to too many crossings-over the surrounding through roads.

3.2. Recognition and predictability

The requirements for recognition and predictability are:
- Avoid searching behaviour
- Make road categories recognizable
- Limit the number of traffic solutions and make them uniform
The homogeneity requirements aim at orderly traffic surroundings: unification of measures, road signs and signposting. In Sustainably-safe, the limitation of the number of road categories produces the largest contribution to the recognition. This assumes that the differences between the categories are large, and within each category are small.

3.3. Homogeneity

The requirements for homogeneity are:
- Avoid conflicts with oncoming traffic
- Avoid conflicts with crossing and crossing-over slow traffic
- Separate vehicle types
- Reduce speed at potential conflict points
- Avoid obstacles along the carriageway
The homogeneity requirements are mainly the result of accident analyses. Many accidents could be prevented by making certain conflicts impossible and separating different vehicle types. Accident severity decreases considerably with lower speeds and obstacle-free zones.

These twelve requirements cannot be directly linked to traffic features and traffic infrastructure elements. Designers can only use these requirements if there is a clear relation with design variables, traffic situations, and design elements. And the other way round: someone who wants to test the design of an existing situation must be able to ‘translate’ the situations occurring and elements into the sustainably-safe requirements. A so-called
Sustainably-Safe Indicator supports the designer or road authority by processing the input data and carrying out the test.

3.4. **Goal of the Sustainably-Safe Indicator**

This is an instrument with which the designer or road authority can determine whether planned or existing traffic infrastructural provisions meet the above-mentioned sustainably-safe requirements.
4. Design of the Sustainably-Safe Indicator

4.1. Application in different design phases and in existing situations

The Sustainably-Safe Indicator has been developed to test all the requirements mentioned. The testing of the requirements can take place during various design phases:
1. after making the initial road network plan
2. after general working out of plan parts
3. after detailed working out
4. some time after opening
5. before maintenance and/or reconstruction

Application of the Sustainably-Safe Indicator is also possible for existing roads and streets (here called 'phase 0').

4.2. Design variables per Sustainably-Safe requirement

Two sorts of design variables are distinguished: the one sort being the traffic and travel variables, and the other sort being the traffic infrastructure variables. In the first planning phase there will be too little known about the actual traffic and travel variables; models can provide an indication. In the fourth and fifth phases and in existing situations, the actual traffic and travel variables can be observed. Sufficient is known about the traffic infrastructure in all phases. The chosen design variables for each sustainably-safe requirement are given in the Appendix, Tables A and B.

4.3. Indicators

The indicators show which variables and features are important for the testing of the sustainably-safe requirements. The indicators for each requirement are given in Table 1.

4.3.1. Measuring and observation methods

The Sustainably-Safe Indicator needs much data concerning variables, indicators, and features. This data can be obtained with existing measuring and observation methods. A summary is given in the Appendix, Tables A and B.

4.3.2. Operation procedure and data needed

Much data is needed as input for the Sustainably-Safe Indicator. Depending on the phase involved, we work as follows:
- Desk research (results of model studies) in phase 1; design drawings in phases 2/3
- Measurements (dimensions, place on the road) phases 4/5
- Inspections (state of the road surroundings) phases 4/5/0
- Observations (traffic and travelling) phases 4/5/0

When using the Sustainably-Safe Indicator, various data is necessary which we (may) assume to be in the possession of the road authority. During the application, it can become apparent that other or adapted data is essential. We recommend, if practically possible, to control the presence, sort, and
type of the necessary data beforehand. The following types of data are
important in each phase:

− Research data (traffic model) in phase 1;
− Plans (section studies, design drawings) in all phases
− Measurement data (speeds, road lengths, volumes) in phases 1/2/4/5/0
− Observation data (surveys, registration number studies) in phases 1/2/4/5/0)

The necessary data is specified in the Appendix, Tables A and B.

<table>
<thead>
<tr>
<th>Requirement, according to CROW (1997)</th>
<th>Indicators</th>
</tr>
</thead>
</table>
| 1 Realisation of as many possible joined residential areas | area and shape
number of dwellings
journey production
maximum traffic intensities
supply of daily provisions |
| 2 Minimum part of the journey along unsafe roads | number of category transitions per route
risk per (partial) route
crossroads distances |
| 3 Journeys as short as possible | length of fastest route divided by straight line
distance |
| 4 Shortest and safest route should coincide | overlap of shortest (in time) and safest route |
| 5 Avoid searching behaviour | presence and locations of signposting
indication of ongoing route at choice moments
street lighting at choice moments |
| 6 Make road categories recognizable | presence and type of alignment marking
presence of area access roads
presence of emergency lanes
obstacle-free distances
presence of bus and tram stops
construction form of crossroads
speed limit
colour and nature of road surface
presence and transverse position of bicycle, moped, and other ‘slow traffic’ |
| 7 Limit and uniform the number of traffic solutions | number of structurally different crossroad types
number of different cross-over provisions and category transitions
number of different right-of-way regulations (per route) |
| 8 Avoid conflicts with oncoming traffic | degree of protection of oncoming traffic |
| 9 Avoid conflicts with crossing and crossing-over traffic | degree of protection of crossing and crossing-over traffic
number of possible conflict points |
| 10 Separate vehicle types | degree of protection of bicycle, moped, and other ‘slow’ traffic from motor vehicles |
| 11 Reduce speed at potential conflict points | degree of speed reduction per conflict point |
| 12 Avoid obstacles along the carriageway | presence and dimensions of profile of free space,
obstacle-free zone, and plant-free zone
presence of bus and tram stops, break-down provisions and parking spaces |

Table 1. Indicators for each sustainably-safe requirement.
Data menus have been made for data input; they show if the data is correct and mutually consistent. The input takes place for every road section and crossroads within an area or along a route.

Figure 1. *Input screen for a road section.*
5. Testing criteria and application

5.1. Testing criteria

What is needed to determine the extent to which a route or an area meets the sustainably-safe requirements? All relevant variables and features are input for each road section in the previous steps. This is done on the basis of the derived indicators of each requirement. Whether an indicator sufficiently fits into Sustainably-safe depends on the sustainably-safe criterion. During the past years, it has been determined for each road category which criteria the variables and features have to meet in a sustainably-safe traffic system (Infopunt DV, 1999; Infopunt DV, 2000, CROW, 2002a/b/c/d). These testing criteria are divergent by nature, sometimes on a metric scale, sometimes on an ordinal or nominal scale. These criteria are built into the Sustainably-Safe Indicator.

5.2. The Sustainably-Safe Indicator: determine differences between package of requirements and (carried out) design

In essence, the Sustainably-Safe Indicator compares each Indicator of a planned or existing situation with the testing criteria. Testing is done for crossroad class and selected routes for each road category. So for road sections one can investigate which portion of the total road length meets the sustainably-safe criteria, and for the crossroads, which share of the crossroads meets them. The final result of the Sustainably-Safe Indicator consists of percentages that indicate how much of the road length or how many of the crossroads meet the various sustainably-safe requirements. If a traffic provision meets the sustainably-safe criteria, and thus scores a high percentage in the Sustainably-Safe Indicator, this does not mean automatically that from now on there will be no more accidents. The sustainably-safe requirements perhaps indicate the contours for a safer road traffic but, up till now, have not been tested in their entirety.
6. The Sustainably-Safe Indicator, road safety audit, and calculation model

It should now be clear that the Sustainably-Safe Indicator is an instrument which, as far as possible, makes objective comparisons between planned or existing design features on the one hand, and externally determined criteria on the other hand. Those who are not safety experts, can also carry out tests with the Sustainably-Safe Indicator. Moreover, the Sustainably-Safe Indicator indicates a relation with the accident data putting a greater weight on those requirements that have a large effect on the number of accidents. The Sustainably-Safe Indicator is a supplement to the road safety audit (Van der Kooi ed., 1999 and PIARC, 2001) and to calculation models for design purposes (FHWA, 2000). These instruments all fit in the approach according to the Road Safety Impact Assessment (Wegman et al., 1994).

Road safety audits are very dependent on 'expert knowledge' and standard checklists. They do not always indicate a relation with accidents. Calculation models are independent of experts and indicate a direct relation with accidents. The supplement which the Sustainably-Safe Indicator offers is the systematic analysis of all parts of a design and the link to accident data.

<table>
<thead>
<tr>
<th>Expert judgement</th>
<th>Road Safety Audit</th>
<th>Sustainably-Safe Indicator</th>
<th>Calculation model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necessary data</td>
<td>drawing and explanation</td>
<td>design data per SuSaf* demand</td>
<td>design variables</td>
</tr>
<tr>
<td>Grip during carrying out</td>
<td>checklists</td>
<td>input menu</td>
<td>input menu</td>
</tr>
<tr>
<td>Quantitative statements</td>
<td>hardly any</td>
<td>many</td>
<td>exclusive</td>
</tr>
<tr>
<td>Linking to accident data</td>
<td>sometimes</td>
<td>via balancing of demands</td>
<td>quantitative relation (formula)</td>
</tr>
<tr>
<td>Reporting</td>
<td>audit report</td>
<td>S-S level per demand (in %)</td>
<td>optimise design variables</td>
</tr>
</tbody>
</table>

* SuSaf is an abbreviation for "Sustainably-Safe"

Table 2. Agreements and differences between the Sustainably-Safe Indicator, Road Safety audit, and calculation model
7. Conclusions and recommendations

About the Sustainably-Safe Indicator, its use, and the results, the following conclusions and recommendations must be made:

- Application of safety requirements to a designed or existing traffic provision is only possible when every part of the provision is linked to road safety indicators.

- Data is necessary for each safety requirement: an inventory of this data is usually necessary.

- The various safety requirements are not equally important for accident reduction: balancing the requirements is desirable.

- The result of the Sustainably-Safe Indicator shows the difference between intended and current or planned safety levels.

- The expertise of the road safety auditor determines the quality of the road safety audit. The quality of the results of the Sustainably-Safe Indicator depends on linking the formulated safety requirements with all parts of the designed or existing traffic provision.
References

Appendix

Table A. Traffic infrastructure: design variables per requirement, method(s) in the Sustainably-Safe Indicator to test design variables and necessary data of road authority.

Table B. Traffic infrastructure and travel: design variables per requirement, method(s) in the Sustainably-Safe Indicator to test design variables and necessary data of road authority.
<table>
<thead>
<tr>
<th>Requirement according to CROW (1997)</th>
<th>Design or help variables</th>
<th>Methods to set down traffic infrastructure</th>
<th>Necessary data (from road authority)</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realisation of as many as possible connected residential areas</td>
<td>Area in square metres</td>
<td>Measurement from road map</td>
<td>Distances between all points where distributor roads cross each other</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Minimum part of the journey along unsafe roads</td>
<td>Origins and destinations</td>
<td>Apply traffic model</td>
<td>Table with most frequent origins and destinations</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Journeys as short as possible</td>
<td>Route choice</td>
<td></td>
<td>Map showing (modelled) route choice</td>
<td></td>
</tr>
<tr>
<td>Shortest and safest route should coincide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid searching behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make road categories recognizable</td>
<td>Design requirements per road category (Infopoint S-S, 1999 and 2000)</td>
<td>Control detailed design</td>
<td>Detailed design drawings of road sections and crossroads</td>
<td>x x x</td>
</tr>
<tr>
<td>Limit and uniform the number of traffic solutions</td>
<td></td>
<td>Inspection per road section/crossroads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid conflicts with oncoming traffic</td>
<td>Dwelling accesses / Carriageway separation / Parking / Public transport stops / Crossroads type</td>
<td>Control overall design</td>
<td></td>
<td>x x x x x x</td>
</tr>
<tr>
<td>Avoid conflicts with crossing and crossing-over traffic</td>
<td>Dwelling accesses / Carriageway separation / Crossing-over on road sections / Parking / Public transport stops / Crossroads type</td>
<td>Control detailed design</td>
<td>Overall and detailed design drawings of road sections and crossroads</td>
<td></td>
</tr>
<tr>
<td>Separate vehicle types</td>
<td>Position of cyclists on cross section / ditto mopeds / ditto slow motorised traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce speed at potential conflict points</td>
<td>Dwelling accesses / Crossing-over on road sections / Speed-limiting measures / Crossroads type</td>
<td>Inspection per road section/crossroads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid obstacles along the carriageway</td>
<td>Parking / Public transport stops / Break-down provisions / Obstacle distance / Street lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 0: existing situation

Table A. Traffic infrastructure: design variables per requirement, method(s) in the Sustainably-Safe Indicator to test design variables and necessary data of road authority.
<table>
<thead>
<tr>
<th>Requirement according to CROW (1997)</th>
<th>Design or help variables</th>
<th>Methods to set down traffic infrastructure</th>
<th>Necessary data (from road authority)</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Realisation of as many as possible connected residential areas</td>
<td>Area in square metres</td>
<td>Count crossers-over on distributor roads</td>
<td>Share of rat run traffic</td>
<td>x X x</td>
</tr>
<tr>
<td>2 Minimum part of the journey along unsafe roads</td>
<td>Distances between surrounding through roads</td>
<td>Registration number study</td>
<td>Number of crossers-over on distributor roads</td>
<td></td>
</tr>
<tr>
<td>3 Journeys as short as possible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Shortest and safest route should coincide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Avoid searching behaviour</td>
<td>Origins and destinations</td>
<td>Registration number study</td>
<td>Table with most frequent origins and destinations</td>
<td>x x x X x</td>
</tr>
<tr>
<td>6 Make road categories recognizable</td>
<td>Route choice</td>
<td>Traffic survey</td>
<td>Data showing actually used routes</td>
<td></td>
</tr>
<tr>
<td>7 Limit and uniform the number of traffic solutions</td>
<td>Design requirements per road category (Infopoint S-S, 1999 and 2000)</td>
<td>Observation per road section/crossroads</td>
<td>List with intended traffic measures (including boarding and marking)</td>
<td>x x X x</td>
</tr>
<tr>
<td>8 Avoid conflicts with oncoming traffic</td>
<td>Dwelling accesses / Carriageway separation / Parking / Public transport stops / Crossroads type</td>
<td>Behaviour rules per road section/crossroads</td>
<td></td>
<td>x x x X X</td>
</tr>
<tr>
<td>9 Avoid conflicts with crossing and crossing-over traffic</td>
<td>Dwelling accesses / Carriageway separation / Crossing-over on road sections / Parking / Public transport stops / Crossroads type</td>
<td>Observation per road section/crossroads</td>
<td>List with intended traffic measures (including boarding and marking)</td>
<td></td>
</tr>
<tr>
<td>10 Separate vehicle types</td>
<td>Position of cyclists on cross section / ditto mopeds / ditto slow motorised traffic</td>
<td>Observation per road section/crossroads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Reduce speed at potential conflict points</td>
<td>Dwelling accesses / Crossing-over on road sections / Speed-limiting measures / Crossroads type</td>
<td>Speed measurements (radar, loops)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Avoid obstacles along the carriageway</td>
<td>Parking / Public transport stops / Break-down provisions / Obstacle distance / Street lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 0: existing situation

Table B. Traffic infrastructure and travel: design variables per requirement, method(s) in the Sustainably-Safe Indicator to test design variables and necessary data of road authority.