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Summary

Presently, the usual method of analyzing accident data in time is through the
analysis of the sequence of accident counts. Usually, the number of accidents
per month or even per annum is used. Results of this kind of analysis are influ-
enced by the starting point of such a sequence and by the length of the inter-
vals used. The aim of this study is to investigate the possibilities for analyzing
accident data independently of the choice of the length and consequently inde-
pendently of the choice of the starting point. This seems to be possible using
the original points of time as recorded.

Techniques developed are based on the Doob-Meyer decomposition of the sto-
chastic process of the count of accidents. It is found that many techniques are
readily available.

It is assumed that the accident process has an intensity process. Under certain
regularity conditions it is found that such an intensity function exists. It is at-
tempted to build a model based on an exponential variant of a Fourier system
that estimates that intensity function.

Some extensions, covering exogenous variables and intervention analysis are
discussed. Finally, some simulations and a real life problem are given.

It is found that the current implementation suffers from a non-optimal good-
ness-of-fit criterion and lacks the ability of inclusion of exogenous variables.
Apart from this, the Fourier system may be extended, possibly by wavelets.
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Preface

The main purpose of this work is to write a thesis in statistics, needed to com-
plete my studies in mathematics at Leiden University, Netherlands. The sec-
ond reason to write this thesis was some dissatisfaction with the techniques
available to me at my (already) long standing work at SWOYV, a road safety
research institute in the Netherlands. The idea was triggered at a discussion on
the effects of seatbelts in cars. This discussion resulted in figure 1. As far as
the discussion is concerned, the results of this thesis have not been applied in
that direction yet. Most countries introduced seatbelt legislation long before the
accident times were recorded reliably enough. Other countries, like Italy, have
introduced legislation in recent years together with other measures.

Another aim was to get more sensitive methods. It is not yet clear if this aim
has been reached, this should become apparent from empirical evidence.

I wish to thank my tutor Dr Sara van de Geer very much for her help, patience
and endurance, I could not have done without. Apart from her many thanks are
directed to the library service of SWOV, in particular Dennis van der Braak, for
I cannot do without them as well (not only for this thesis). I also want to thank
my colleagues at SWOV (in particular Dr Peter Polak) for their suggestions
and SWOV for letting me use accident data.

Leiden, 1993.
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Introduction

The probiem

In the Netherlands an extensive procedure is conducted to register accidents
occurring on roads. Among many characteristics the point of time at which the
accident occurred is recorded. This point of time is of course an approximation.
Theoretically, the accuracy is up to one minute. In practice, however, most ac-
cidents are recorded at a precision of about fifteen minutes.

The question arises whether it is possible to use this information in order to
analyze the development of the occurrence rate of some kind of accident. Cur-
rently, at best data consisting monthly counts are analyzed. This kind of method
using the number of accidents for a sequence of periods of time of a particular
length is vulnerable to two kinds of problems, although sometimes no alter-
natives exist. Both problems are similar to the problems using histograms in
density estimation (see Hérdle [1990}). Both the choice of length and the start-
ing point influence the results of an analysis. Sometimes these effects can be
decisive (see figure 1),

600
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400 Qe Year=aug-jul

2004 i
First year after ———p»
intervention

0 T T T
1978 1980 1982 1984 1986 1988

Year

Figure 1. Two alternative registrations of killed car occupants in West Ger-
many.

In August 1984 the German government introduced fines for not using safety-belts.
This resulted in a sudden large increase in belt-usage. It was expected that this increase
would result in a similar sudden decrease in the number of killed (front seated) car oc-
cupants. One series is the usual annual number of killed car occupants, the other is a
reordered series consisting of the number of killed car occupants aggregated over the
months August through July every year. It is clearly visible that the traditional annual
counts obscure a possible effect. Although the process of killed car occupants is more
complex than the process of the accidents themselves, the example should be informa-
tive. (Source:Statistisches Bundesamt [1988]).

In addition, a problem might be the obscuring of effects within the sample pe-
riod. In particular, this can be important when an (intervention) analysis is con-
ducted on an intervention that influences only a part of the day, specially when
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1.2

Accident data

it is not (yet) very well known how. More generally, a change in the structure
of a periodic can be of interest by itself.

The aim of the present study is to investigate the possibilities for analyzing ac-
cident data independently of the choice of the size and consequently indepen-
dently of the starting point. This seems to be possible using the original points
of time as recorded.

On the theoretical side, one is tempted to assume that at any point in time (or
better: any time interval) a positive probability exists that an accident of some
kind occurs. One should realize that this probability of the occurrence of an
accident of a particular type is not constant over time. The possibility of an
accident is heavily dependent on many variables, such as the presence of traf-
fic in that interval, visibility conditions and so forth. Because these conditions
may vary easily, it seems necessary to assume that the accident probabilities
also vary over time. Secondly, because conditions may change seemingly at
random, it is attractive to assume the probabilities vary randomly, or at least to
some extent. Furthermore, it is noted that while probabilities of ‘exotic” acci-
dents are slim, they are still nonzero! These assumptions play a central role in
the following discussion.

Additional assumptions are:
— The casualties as a result of the accidents do not significantly affect the popu-
lation.
— No more than one accident can happen at (exactly) the same time,
— The registration system is capable of observing accidents at any (realistic)
rate. Registration will not be overrun causing periods where accidents can by
pass the registration procedure without being registered because the system
cannot handle them. In practice however, this assumption is violated to some
extent, mainly due to police workload.
— There is not a so-called after effect: when an accident occurred, no period
follows in which no other accident can occur.
— Accidents do not influence each other. When an accident causes another ac-
cident both are seen as one accident. This is implemented in practice in the
Netherlands, although in the case of a *pile-up’, cars colliding later are usually
seen as new accidents.
It is assumed that the accident process, the process that seemns to ‘generate’ ac-
cidents, is a result of:
— The traffic volumne.
— The traffic participants.
— Coincidental circumstances such as:

- road works.

- weather influences.
The traffic volume will result in a sort-of base(line) intensity process of the
number of traffic participants at risk at a certain time. In theory this process
could be observable, but even in a small country such as the Netherlands this is
practically impossible. This process, together with some (generally unknown)
danger process is supposed to generate a process that ‘generates’ dangerous
situations, that may or may not result in accidents of some kind.



In this work, aspects of this combination process, the accident process, are stud-
ied. It is thought that this process has a sort of underlying intensity process that
is assumed having continuous paths, or at least it is stochastically not distin-
guishable from a continuous path process. This intensity process, further called
intensity function, is the main object of study in this work.

Another, more serious note is that for some types of accidents, the reliability of
the registration is lower than for other types, mainly due to differences in dam-
age (personal and material) and insurance matters {no-claim rebates). This re-
sults in the fact that the accident process is only partially observed. This matter
is addressed too.



2.

2.1

2.2

Theoretical background of the intensity function

Definitions

Before starting, a few notations and definitions should be agreed upon. First,
it should be pointed out that only processes in one dimension are being con-
sidered. Furthermore, the point-processes will be considered to run between ()
and 1, or other simple margins when appropriate. Because of the simplicity of
transforming between those various bounds the text will switch between those
bounds for convenience.

Definition 2.1. The point process N, ¢ > 0 is defined as the number of acci-
dents (or events) that have occurred up to the pointof time £, Ny, = 3, I(7, <
t). Naturally, N; € NU{0}. A marked point process is a process in whichevery
point has a mark, that is a property. In the tratfic safety context this mark may
indicate the kind of accident that occurred at time ;. Finally a p-thinned-point
process is aprocess N/ = 5. U;I(m; < t), U; conditionally independent given
N.P(U; = 1|N)=1- P(U; = 0|N) = p. p can be seen as the retention
probability of a point 7;. In the traffic safety context this is the probability of an
accident actually being recorded. Obviously, the intensity of the thinned point
process is p times the intensity of the parent process.

The Doob-Meyer theorem

The Doob-Meyer Decomposition [Karr, 1991, section 2.3] offers the theory of
the existence of a so called compensator for every point process N,. This com-
pensator serves as the integral of the intensity function we are looking for. This
theorem cumulates in [Karr, 1991, Theorem 2.22] that states that for a point
process satisfying the assumptions:

Assumption 2.1. Let the pointprocess NV, induce the filtration F; in the prob-
ability space (€2, F,P). Assume the filtration (H) = H, has the following
properties:

~ H is right continuous.

Ho contains all P-null sets in Ho, = V50 Hs.

N is adapted to (H), so F; C H, -

E(N,;) < oc for each relevant .

Theorem 2.1. There exists a unique random measure ® on R such that:
— The process ®, is predictable with respect to (H).
— For each nonnegative predictable process (':

E[/ ('dN] = E[/(,l’d@] 2.0
& is called the compensator of N. Not mentioned in [Karr, 1991, Theo-

rem 2.22] but mentioned in [Fleming & Harrington, 1991, Theorem 1.4.1] is
that ®, is an increasing process.

10



Corollary 2.2. Using (' =

E[/ AN,] /d@

Theorem 2.3. [Karr, 1991, Theorem 2.14] the following statements are equi-
valent:

— @ is a compensator of N.

— The process My = N, — &, is a (mean zero) martingale, with respect to the
filtration (H).

In the case of thinning, the compensator of the p-thinned process is p®;.

It can be noted, as many authors do, that the point process N, can thus be de-
composed in a predictable process @, and a non-predictable process M. What
can be predicted, in ®,, is mainly determined by the amount of information in
(H). Karr states [Karr, 1991, section 2.4] that the existence of a stochastic in-
tensity depends on the amount of information in the filtration. In the extreme
case that the filtration contains all possible information, the compensator will
be non-stochastic and equivalent to the point process, thus non-continuous. The
point process will be non-stochastic too in this extreme case.

The next step might be to study under what circumstances {®) has a (stoch-
astic) intensity ¢ with respect to a (Lebesque) measure, defined by:

b, = /t deds {2.2)
0

The mere existence of ¢ through theorem 2.1 is not sufficient for the existence
of an intensity function. What is left to prove is that it is reasonable that (®)
has a version that is almost surely differentiable. Sufficiency follows from the
assumption that &V is simple, i.e. no two accidents can happen af the same time.
This assumption was already stated in the introduction. Heuristically, as a con-
sequence of equation 2.1 using [Karr, 1991, proof of theorem 2.14]:

C(u,w) = Tseuctylwen)
is a non-negative, predictable process, so E(N; — N |A) = E(®, — O [A).
This can be rewritten to E(dNJA) = E(d®,|A) for all A € H,_. Because
(@) is predictable, thus ®; is measurable with respect to H,_, it follows:
db, = E(dN,|H,_) (2.3)
Thus ¢, is defined though:
ot =F (AN H,-)
=P (dN; = 1|H;-) 24)
=P (dN; > O|H,-)

Definition 2.2. When existent, the intensity process is ¢, is defined through

d, = f(f ¢$.ds. Due to the fact the @, is increasing, it will be argued that the
intensity is nonnegative. In addition the process is supposed to be bounded.

11



2.3

Consequences of the Doob-Meyer theorem

Asregards assumption 2.1, often called the usual conditions, the first two points
are generally met. In practice () will consist of the accident records and some
other, supposedly relevant, information. This results in the fact that the third
assumption will be met as wil. The last point is only of theoretical importance.
It will be met anytime someone survives to analyze the accident data, but it
imposes some constraints on possible models that can be estimated. [Fleming
& Harrington, 1991, Theorem 1.5.1] add to theorem 2.1 and theorem 2.3 the
result that the process

{
I, = / CdM, (2.5)
]

is a (H) martingale under the conditions above with (' a bounded, (H) pre-
dictable process. Because E[L;] = 0, this gives:

£ t
E / (1 dN] = E] f ',dD,] 2.6)
4] 4]
which will play a central role together with:

Theorem 2.4. [Fleming & Harrington, 1991, adaptation of theorem 2.5.4]
Under assumptions above {equation 2.5):

— The process Ly is a (H)-martingale.

— ELt:0.0_\:t<OC.

~ var(Ly) = Efé C2dd,, 0 <t < cc.

Which can be generalized for L;; = j(f CiodMg,i=1,2:

— cov(LyiLy) = Efot (Clasd®,, 0 <t < o0,

This theorem may help when tests are to be derived for various martingale es-
timators.

12



3.

3.1

Estimating an intensity function

When a function has to be estimated, an estimation criterion must be decided
upon. Often estimators in the sense of least-squares or minimum risk are used.
If there is no external reason to choose a particular criterion. other considera-
tions are used. These considerations include analytical tractability, numerical
efficiency and robustness to some kind of disturbance. Even then quite a num-
ber of criteria are available, among them minimizing least-squares, maximiz-
ing likelihood, partial likelihood, quasi-likelihood, M-estimators and probably
many more. The next (first) subsection is devoted to the maximum-likelihood
criterion. This method is employed here. The second section exposes three pos-
sible least-squares-like criteria, the latter of which is shown to be equivalent to
the maximum likelihood criterion under certain circumstances.

Derivation of the loglikelihood-function

In this subsection the loglikelihood is derived of both the number of points and
their locations. It is shown that this loglikelihood holds for alarge class of point
processes, not just Poisson processes, because their properties are not used in
its derivation.

First, conditionally on n, P(ty = 7y, ... .1, = 7,) is derived:

kt)
P(t-l Ty e by = Tn) = H P(ti =7iltt =T, tiog = Tis )
i=1 (3.0

Given ¢, the likelihood of a realization of the point process up to time ¢ is now
computed as follows:

1) The last occurrence 7, < t is found. Note that this time is not equal to .

2) Starting at 7o = 0, the likelihoods of the occurrences of 7;4¢ after 7; are
computed, of course assuming 74, ... , 7, is an ordered sample.

3)If 1 is an occurrence time itself, the same as 2) is done for ¢, otherwise the
likelihood of no occurrence between time 1, and 7 is computed.

What is needed is a formulation of this likelihood. Define T}, or for brevity
T, as the stochastic variable of the time of the next occurrence. It is assumed
that its distribution is continuous, so there is no distinct timepoint that has a
positive probability of occurrence. This means that the distribution F' can be
differentiated. The density f of the distribution is derived next.

It is important to note that the likelihoods are always computed for points
(times) in intervals that are open on the left side: I = (rk, o0 ). Using the as-
sumption that no two occurrences can happen at the same time, this means that
for every t there is an open environment that contains no other occurrences.
This allows the use of equation 2.3 and through this equation 2 .4.



The probability of an occurrence between the times ¢ and ¢ + At given no oc-
currences up to time ¢ is:
Pt<T<t+AtNT >t)
P(T > 1)
Pt <T <t+ At)
- P(T2>1)

Note that {T' > t} = {T < t}° € H,_. This allows for the use of equation 2.4
in equation 3.2, further using continuity of F' in equation 3.3 it follows:

P <T <t+ AT > t)

P(t<T <t+ At

Tzt)=

o{t) :Eéfé kX (3.2)
1 Pt <T <t+At)/A¢
= Aulo P(T > 1)
f(t) ;
T1-F() 33

The right-hand part of equation 3.3 is commonly known as the hazard-function.
Many sources, including Kalbfleisch & Prentice [1980] give properties of this
relation, among them, adapted to the above sketched situation:

T
HT) =exp (Iog{d)(T))—/ (.»")(S)ds)

T
1 — F(T) =exp (—/ gé(s)ds)
Tk

Putting it all together:

Ly Tase e )

= exp (— / " q’b(s)ds) I] exp (10g (o(71)) ~--/ ‘ cﬁ(s)ds)
v Ty k:l Th—1

using 0 = 74 and 7,41 = 1 or the final time point. This results in:
L{¢)T1, 0. Th) Z log(p(ms)) — / o(t)dt (3.4)
0

as the loglikelihood. The maximum likelihood estimator of G of ¢is

¢ = argmax LTy, )

$ES

with § a suitably chosen class of functions or sieve, see § 3.3.1 below. In the
case of exogenous variables, the marginal likelihood is maximized. Let M, be
induced by N; and the exogenous variables Y}, Y; predictable. Define for mn,

L AN () = N(t) = N(tio1) AY (1) = Y (1) = Y (tio) AD(t;) =
@(té) — ®(t;-1) then:

P(AN(t1) = 21, AY (#1) = p1,- . - . AN (t) = 20, AY (L) = )

ki

—HP —_ Tz!A‘N(il)

i=1
AY(t) = 1y, AN(tim1) = 2021, AV (tim1) = yi)

14



32

=TI PIAY (1) = gl AN (1) =
=1

AY(t) = SAN(toy) = 3o AY () = g

) . 1—zy
~ H(I)(tz)m‘ (1 - ®(tz)} 9(371“. s L1 Y10 - '*ym.)

Now, assuming m large enough and N simple, z; = 1 i.L.f for some j, 7; €
(;_1.%;), thus:

k1

Z(z log{m) + z;log(A®(t Zlog o
=1
L e 1 ‘
S log (1 — AB(#:)) ™ — _/ (t)dt
i=1 0
1E ST NS T ) some function not involving (the shape of) ¢.

This yields the same results as above.

Optimality in the sense of least-squares

Another way of viewing the optimality of the fit of a model is optimality in
the sense of leasi-squares. In this particular case this could be defined as the
integrated squared error, 7.5 £, Traditionally:

[SE" = / (B(1) — o(1))2dt
1
_/ 9) (li ‘/ )f)(5 (lf+( (35)
0

or a weighted version

15 = [ (3(0) - o(0)Pas (1)

1 o 1 fod .
- / F2(1)ad(t) — 2 / S(1)b(1)dD(t) + =
0 0 (3.6)
Both versions are not as tractable as the integrated squared error of the
log(o) = v~
1 ~ B
15‘1?:/ (1) = (1)) 2dD(¢) G.7)
0

1 "~ 1 »
=/ ?;"'?‘Z(t)d@(t)—Q/ P(t)i(t)dd(t) + ¢
- 0 (3.8)

But equation 3.8 (and equation 3.6), are not empirically computable. On the
other hand:

argmax L(o, 7y, .. , T,
PES
1 1
= argmax L(¢, 71, .. o Ty) — / log(@o(t))dt + / do(t)dt
Ses Jo 40



The following can be derived:

1 » 1 1 )
/ log (—-) dbgy — / o(t)dt -i-/ oo(tidt =
Jo AN 0 0

1 b 1 1
/ log (1 + 2 ‘ @o> ddg — / olt)dt + | op(t)dt
0 o

) 0

using log(1 + 2) ~ & — 12*

L[t (é—do\? tro—o
o ('———9 d(po —}—/ - ac (lq)()
2 Jo o 0 Yl

1 1
40 JO

T (4 — 2
L=, (3.9)
2 o oy

The integrated squared error of log(¢) = ¥

/01 (log(¢) — log(dp))* d®y =

-1 b o 2
/ (10g(1+€) “f’“)) idq
4]

(24

2

using log(1 4 z) & = this time instead of log(1 + z) =~ v + 1u

1{h — hn)?
z/ (&= o), (3.10)
O

do

Clearly, if ¢ is close enough to ¢q to allow the linear approximation, the maxi-
mum likelihood criterion (maximum in equation 3.9) is equivalent to the least-
squares minimum as in the version described in equation 3.8 and equation 3.10.
Unfortunately, equation 3.8 cannot be evaluated but the maximum likelihood
criterion can be used.

33 Complexity considerations

The previous two measures assess the deviation between the (estimated) model
and ‘reality’, usually through observed data. It is well known that criteria based
on one of these two alone may not suffice. This can be clarified through the fol-
lowing example: suppose we have only one observation. The maximum likeli-
hood method will select a function as peaky as possible. It may be unjustified to
assume that points can only occur at that very point, even though that is all in-
formation available. This may not be a very realistic example but it serves well
as an introduction to the necessity of recognizing the complexity problem,

Complexity can be defined in various ways. The example above shows peaked-
ness as a measure. A common measure is the relative steepness of a function,
for instance:

&'(x) ’
/(cf)(m)) &

16



3.3.1

3.3.2

Lo
Ly
Ly

or in a weighted version, compare with Good’s roughness penalty in § 3.3.2:

/ (@(2))”
(j)(.l‘) ‘

Another is the maximum periodicity of the function.

There seem to be two ways of restricting the complexity, regardless of the
measure used. The most attractive method is the a-priori method in which,
based on the observed data and possibly prior knowledge, a certain class of
candidate functions is determined. Such a method is discussed in the next sec-
tion. Some methods attempt to restrict the model while estimating by adding
a ‘penalty’. Less attractive methods are a-posteriori methods, where a solution
is scrutinized after the effort of estimation.

The method of sieves

Penalty methods

A method similar to the method of sieves Grenander [1981] (as described in
[Snyder & Miller, 1990, p 147] or [Karr, 1991, p 229]) can be used to estimate
the intensity function. This method is conceived around the use of so-called
sieves, sets of functions with particular properties. The properties of the sieves
are set in a manner corresponding to the (number of) data-points used. It is
hoped that the (constrained) estimated intensity function converges to the true
intengity function as the number of points tends to infinity [Snyder & Miller.
1990, p 148].

An alternative is to penalize the solution for its complexity. A method like the
Akaike Information Criterion (AIC) Akaike [1973] could be used. This method
is widely used butit focuses on the number of parameters used, not on the shape
of the model itself. The AIC is employed as a comparative measure and is com-
puted after (model)estimation. Therefore it does not influence the actual para-
meter estimates.

Another example is Good’s Nonparametric roughness penalty Good & Gask-
ins [1971], applied in point processes in [Snyder & Miller, 1990, p 151]. This
method is based on the Kullback’s information divergence Kullback [1968] be-
tween a distribution and its shifted version. The method of Good & Gaskins
[1971] employes the optimization of:

w(d) = L(¢) — E(P) (3.11)
{Snyder & Miller, 1990, p 147] suggest the use of

gy o [ )
(o) = &/st

with « suitably chosen. This results in a certain class of kemel estimators.
Study in this direction is useful.

Influence functions and Local-shift sensitivity

From the theory of influence functions, [Hampel, Rousseeuw, Ronchetti &
Stahel, 1986, chapter 2}, the concept of local-shift sensitivity can be used. The

17



local-shift sensitivity measures the effect of an infinitesimal shift of a point
from =z to a neighboring point y.

The concept of Local-shift sensitivity can be used to account for the inaccuracy
of the observations themselves. Intuitively it is reasonable to restrict the com-
plexity of the model based on observational precision. Itis of no use to estimate
a periodicity with a wavelength smaller than the error of observation. From a
practical point of view it seems a quite reasonable idea to restrict the influence a
standard ‘deviation’ of an observed point can have on an estimate. With respect
to an estimate of the intensity at a certain timepoint, the upper bound of the in-
fluence over all possible shifts of observations may be a reasonable measure of
admissibility of an estimate. In general, the upper bound for all timepoints in
the interval may be applicable. Another consideration is what to compare this
measure with. It is probably useful to compare this influence with the uncer-
tainty due to the normal estimation procedure.

34 Empirical characteristic function

In [Stephens, 1986, par 4.16.5], goodness-of-fit tests are suggested based on
characteristic functions. This method can be used in the following manner. Es-
sentially, as suggested in [Stephens, 1986, par 4.16.5], the empirical character-
istic function v, (s) is defined:

Yals) =n" [ZF“T‘} (3.12)

Where 1y, ..., 7, are the sample points. We could attempt to approximate
the (assumed continuous) intensity function through an approximate inverse
Laplace-transform by:

- 1
G)"nyT(:zr) = -

27

This yields:

T 1 - T —i5T _TST; )
o, r(t) = mz > e e T (s )

~gar 22 ey
sin{T (7 — 2
_gnsinlT (- 2)

nw (7, — )

=1

multiplying by n to get the properly scaled intensity:

~ i 51 (T T —
(p”'T(:E) :E Sln?ﬁ‘ (T(~T_ :1‘),1 )) @19
1=1 g ’
=Y k(T 7,z) (.14)

In this manner, ¢(z ) is estimated through kemnels (7", 7;, x). As compared to
more common kemnels (see Hiirdle [1990] in a General setting), kernels of this
type are smaller than zero for some z, although f ET.m z)de = 1,

18



In [Stephens, 1986, par 4.16.5] the empirical characteristic function is used for
goodness-of-fit statistics. Tests similar to Kolmogorov-Smimov and Cramer-
von Mises are suggested, sup, |3(t) — y(¢)] and [ |3(¢) — v(#)[*dG(¢), G(¢)
suitable chosen, Epps & Pulley [1983]. In a wide sense this is what is done in
this work. The gradient test, see § 3.7.3, is -(7(¢) a counting measure- similar
to testing equivalence of

/Sin(na:)@(ar)daz = /sin(n:z:)dN(:n)
and
/C()S(”n.:z:)@)(i)d:z: = /cos(naz)df\/’(:z:)

for a specified value of n.

The question rises whether it is possible to estimate T from the data. More or
less this can be rephrased in whether or not the loss-criterion can be minimized.

Traditional maximum-likelihood methods, using é,L'T, may not be feasible: if
T tends to infinity, the peaks of the kernel, having a value of T'/ 7, dominate the
solution (see figure 2) whereas even for bounded intervals I [; kdx — 1 (see
figure 3). To put it in other words: as of a certain point the likelihood increases
monotonous with 7", so T has to be contained in some bounded range.

|

21 T=10
1 T=1
a L1l A
N \Q/ 3 4\/ AR

Figure 2: Empirical characteristic function kernels k(T 7,z )
k(T 7, z) = 2TT=2) yging 7 = 7, T = 1, 10.

- }
7 {T—x)

It may be possible to estimate T using cross-validation along the lines
of classical kemel-density estimation techiiques like the ones described in
[Hiirdle, 1990, par 4.3]. This technique, using either maximum likelihood
cross-validation or least-squares cross-validation, may be employed to get the
optimal value of 7. Depending on the precise method of cross-validation, this
method is less sensitive to the peaks then the previous method. This method
has a disadvantage, among others, in that it is computationally of order n?, n
being the number of recorded accidents. Hence it is only a feasible method for
small 7. What could have been tried is increasing the value of T to the point
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\ T=10
1.1 Sa

:/\/\/\I\/\f\/\/\/\
TRV AT NARVE:

Figure 3: w(T.2) = [" k(T,7.2)d(r)

Effect of limited time-interval. Assuming constant intensity function ¢ = 1. due to
the bounded intervals. estimation on the bounds is biased. In this figure w(1, r) and
w{ 10, 2} are drawn. Clearly, limgy_ . w(T. 2} = L. In figure 2 it is seen that at the

same time k(T, 7, z) is getting peaked. f both o — xand T" — ~, w{T.2) =
FT KT r 2)é(ryd(r) — L.

where some goodness-of-fit criterion is met. This line of development has been
omitted, partly because of the still-large computational effort, partly because of
the restricted applicability of kemel-estimates.

Applying the roughness penalty method can also only be done for a small num-
ber of points. This can also be stated for all methods based on direct usage of the
points. In the next subsection, a method based on a derived statistic is exposed.
Methods based on a function of the data, essentially methods based on reduced
data, intrinsically employ a kind of restricted model. This will be pointed out
§ 3.0.

35 Assessing model adequacy

Assessing model adequacy is a key step in estimation procedures in general.
The choice of methods is determined by (preliminary) assumptions. If a model
is assumed to be a member of a particular class, fit of that model to that class
can be tested. In general, tests based on such ‘subclasses’ are more powerful
than their more general counterparts. The current case is no exception to that
rule. In the followin,g two general tests of fit are discussed. Another possibility,
a y*-test based on the fit of counts inintervals, is omitted due to the dependence
on the construction of those intervals. The method could be used to test suffi-
ciency of amodel within a class of models, but may not indicate certain model
deviances.

Another problem is that tests have to be carried out while parameters are being

estimated. This invalidates many standard procedures or causes considerable
loss of power.
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Goodness-of-fir statistics based on spacings

This method is based on the, rather natural, observation that the time elapsed
between accidents bears relation to the model. The idea due to Moran [1951]
as explained in Cheng & Stephens [1989] is: Suppose @1 < -++ < @, 18
an ordered sample of independent stochastic variables with distribution Fy(x )
where # is known. Let y; = Fy(z;):

Di(0) = yi — yi (i=1,....m)

withm=n+1,yo=0and y,, = L.

ks

M(6) = - log(Di(8))
j=1

, ) 1 1
Y = m{log(m) + Euler v) — 5" Tom +
2
S A 11
o = 1 5 ) 2 bm

It is further noted that M () is asymptotically distributed as N (.02, al-
though convergence is stated as being slow. Cheng & Stephens [1989] give a
small-sample y2-approximation.

The authors also give statistics in the case when k parameters are estimated.

N

M(6) is based on Fy. The authors define:

A 1
(f‘l = T — (T)'n)

<L

(N1

T

(' = (271«)_%(Tm
Then Cheng & Stephens [1989] argue

~ e 1
T(6) = (M(8) + gk~ C1)/C

is approximately y2-distributed. 9 should be an efficient estimate of 6.

Adaptation to the case where parameters are being estimated is simple and
straightforward, as the authors state. This is a major advantage of this method.
However, performance in terms of power is somewhere between little and less.
Simulations showed that its performance was too mediocre to be useful in prac-
tical cases.

Derived Kolmogorov-Smirnov statistics

Kolmogorov-Smimov statistics are often used in practice. The tests are based
on comparing the empirical distribution F,, () to the hypothetical distribution
Fa):

D, = sup |F(z)~- F,(z)] (3.15)

03 < L OO
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In the current setting, the fit of 6(z) to 8(x) is to be tested. Given n and non-
stochastic ¢, the points 7y, . . ., 7, are independently distributed with density:

__ eft)
fOT ol s)ds

T being the end point of observation, as was denoted by [ up to now.

f(1)

In the standard case, when F is completely specified, confidence limits of 1
are widely available. In the composite case, when parameters are estimated
most effort seems be directed to the case where location and scale parameters
have been estimated. Most authors denote the general case to be difficult and
out of the scope of their work. [Kendall & Stuart, 1987, chapter 30] state that
tests are no longer distribution free, but parameter free in the location-scale
case. Most authors refer to Durbin [1973]. It seems there is no recent reference
about the subject. Even Agostino & Stephens [1986] only offer results in the
direction of so called half-sample techniques, for instance Braun [1980] with a
method supposedly only valuable in the large sample case. Durbin [1973] of-
fers guidelines for the development of tests, but also mentions a suggestion by
Rao [1972], which adapts equation 3.15 in first order approximation about 6:

Fu(z) — Flz) =F,(z) = Flz.0) 4+ (F(z.0) — F(z.0))

—Fo(z) = Flz.6) + (6 - g)m
o (3.16)

A

The key step is the estimation of (# — €). Rao [1972] suggested the use of a
random sub-sample of the data points containing n' points, about half the sam-
ple. From the reference in Durbin [1973] it seems Rao [1972] suggested the
use of the first »’ points, or they were used for simplicity as is done here. Of
course, the points are randomly selected in practice. In the current application
each pointis selected or not selected based on a (semi)random experiment. This
yields a selection of about half the sample. In Rao [1972] probably a selection
of exactly half the sample is used, when possible. The estimate of Rao [1972]:
(Z is Fisher information of one point)

g — é _ _‘:)l i r‘)log (iltj,(})'z_1

~

U ous o8

It could be suggested to use 1 instead of 2 to yield:

n' o - . AV e ATW A
R.(z) = F,(2) — F(z,0) + —1—, Z dlog f(:lllf)) 7! df(‘ﬂ;’g)
™y o8 9% (3.17)

J=1

Using sup |R,,] instead of D,, in equation 3.15 completes the method. The
method has to be adapted to the current situation, considering:

ol 0)ds

Flx,8) ==
(.6) S o(s,0)ds

3
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This means:
OF(2.0) _ [T ods [ tods — [ Zads |5 ods
- = 2
= a(T)b(z) — a(T)*b(T)a(z)™! (3.18)

a(t) = (/Ot gf)ds> -
b(t) = (/Dt Td.%@rls)

T
log flz.0) =log olz.8) — iog/ ods
0

with:

and the vector

2339 fg oz, 0)dx
fg o(x.0)dx

0 J
57 108 f(2.0) = 5 log ¢(x.6) -
a s al
= %bggs‘)(x?()) —a(T)b(T)

defining:

’FL,

o= Z (-{% log ¢(x.6) — a(T)b(T)> /n’

3=1
then, summing:
Ru(z) = Fo(z) — F(z,8) +

T (oT) -alPUT)T)

Durbin {1973} acknowledges the claim due to Rao [1972] that tests based on
R.,.(z) behave asymptotically like tests based on F'(z, 6) when F'(z, 6) is com-
pletely specified. Clearly, under Hy if » tends to infinity, ¢ tends to zero, when
maximum likelihood is used or any method obtaining an asymptotically equi-
valent solution. This holds for F,(z) — F(=, 63) as well.

A major disadvantage of this method is the random character of ¢. This results
in the phenomenon that the tests are not replicable. It is clear that this method
can be improved by a less arbitrary estimate of § — 8. Otherwise, the method
tumns out to be effective and it is employed further,

[Pollard, 1984, Examples 15 and 23] addresses the matter in rigorous manner
(example 23) and a less rigorous way in example 15, which may be employed
to gain a better approximation.



3.6

3.0.1

Series approximation of functions

Introduction

In practice not very much will be known about the shape of the intensity func-
tion. This means a candidate function has to be chosen from a large class (or
sieve). At this point there is no obvious choice as to what class of models is
suitable. Considering this fact, it seems a good idea to choose a class of mod-
els that is relatively easy to use.

The first consideration is about restricting the potential intensity function to be
larger than zero at all times or not. This has many consequences, as will be-
come clear later. At first sight, it seems essential to restrict the intensity func-
tion to be non-negative. Although post-estimation possibilities may exist, at
this point it is opted to constrain the parameters while estimating in order to
yield a non-negative intensity function. This can be done, for instance, by ac-
tually estimating ¢ = ¢ in the non-negative case or ¢ = exp{ @) in the strict
positive case. The latter is pursued here. An advantage of using a quadratic or
exponential form is in avoiding serious numerical problems of nonlinear esti-
mation under nonlinear inequality constraints. Both Fletcher [1981] and Luen-
berger [1984], and probably many more, advise to avoid such constraints when
possible. Given the assumption that ¢ can be written as exp(+») for some v, a
system must be set up to approximate « and though this ¢. A number of choices
are available, among them:

— ‘short wave’ systems: systems consisting of functions that are essentially lo-
cally defined. Those functions fade out when moving away from their center.
Examples are kemel methods and so-called ‘wavelets’.

— ‘long wave’ systems: polynomial approximation, fourier approximations
and the like.

The ‘long wave’ systems seem to have the advantage of allowing some kind of
extension beyond the observed period, commonly called prediction. Because
this application might be useful, a combination of ‘long wave’ systems has
been chosen.

When applying a series approximation using terms fi(« ) it is assumed that any
continuous function can be written as the infinite linear combination of terms

fi(z).
P(t) = i gkfk(t)
k=0

To be practical, all terms fi(z) should be almost everywhere continuous and
it tums out to be virtually necessary that all terms are bounded on a compact
set, say between —1 and 1 for reasons shown below. Other practical properties
include f being both differentiable and integrable.

The idea [Press, Flannery, Teukalsky & Vetterling, 1989, p.168] is that, given
the fact that the coefficients decrease after some index N, ‘die out’, the de-
viance is dominated by |8y fr(z)] < |6k|. This idea can be found in various
other sources as well.
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Assumming the intensity function is positive it can be written as:

ot} = exp (Z 9kfk(ﬂ)

k=0

Or as approximation using /V terms:

.{]\.!'

on{t) = exp (Z ()kfk(t)> (3.20)
k=0

which should be sufficient, bias is neglected against variance. From now on it

is assumed that the intensity function can be defined well by equation 3.20.

It is worthwhile noting that the use of hybrid systems. e.g. combinations of
fourier and polynomial systems may have practical advantages. It turned out
to be useful that the estimated model has stationary (Fourier) components and
a non-stationary (polynomial) component. This fact slightly complicates mat-
ter in the following part.

3.6.2  Loglikelihoodfunction of a series approximation of functions

This subsection is concerned with the maximum likelihood estimation of func-
tions constructed as above. The loglikelihood is in this case:

m N 1

LIT1e oo Tm) :ZZHTfT(Ti) —/0 on(t)dt
=1 y=0
N m 1
:—_Z 6, Zf.,(’ﬁ;) —/ on(t)di
r=0  i=1 0

Using:

(3

(’Vr - Z fT(Ti)
=1
this results in:

N 1
L(rive ) =32 0:C, = [ (et (321)
=0 0

It is clear that it is advantageous to have the f, bounded, so large sums (', of
terms f,(7;) can be reliably computed from the data. Imagine having to sum a
lot of terms 1% in the range of 0 < # < 7.

Because the terms are bounded and continuously differentiable with respect to
01, integrals of ¢y (t) are differentiable under the integral. This means that the
loglikelihood (equation 3.21) is differentiable with respect to 6. Its derivative
with respect to 6y, is therefore:

OL(T1,..., Ty : ! :
U T) e [ ptyon(ajar (3:22)
()9k 0

Finally, second order derivatives:

LTy, Ti) . 1 |
00,00, - /0 Fi(8) fr (t)on (t)dt (3.23)
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Because EC, = lijol f-(t)dN(t) and can be estimated by >, f.(7 ). it
follows from theorem 2.4 that the expected value of the gradient is zero if Hy
is true. This result can be used in assessing the relevance of not-used terms,
where theorem 2.4 also offers an estimate of its variance.

It has already been noted that in the rest of this work, the set functions consists
of the goniometric functions and one trend factor;

f-(t) =
folt) =1
‘ sin (T’r—'f-f) k odd. ,
Ji COS (%T ) % even
As is obvious, apart from & = —1, fi is bounded on R. At this point it seems

useful to indicate a possible confusion. From this point on the meaning of fi.{)
may be ambiguous. When appropriate, it is defined by equation 3.24 and else-
where it means actually something like f;, (t), x the index in the sense of equa-
tion 3.24. It is hoped that this may not result in too much confusion.

In the following subsections asymptotic results are studied, in these cases itis
assumed that there is no trend while this would mean that either ¢(¢) — 0 or
¢(t) — oc, which is not considered realistic and for which cases asymptotic
results are difficult to obtain, if useful at all. The choice of the fy, or better,
the assumption that the true intensity function can be approximated well by
the set functions defined that way, implies some form of stationarity of the true
intensity function. This leads to some derived assumptions, using ¢ — 2c:

SV , T
B [fo @3.5)43 —e < (3.25)
[@m;w«ﬁq lod] < o (3.26)

i T S @ q:
E [M — hij ]I’ngi < oo (3.27)

and equivalents to ¢(8), ¢;(8) and h;;(6). These assumptions will be matched
with point process equivalences, again, using ¢ — o<, at least in probability:

V[()t(ij\f(‘q)l;g;
= ;
jgfidN(s)L~

" ¢ l¢;] < o0

Jo fifidN(s) p i
t b

< 00

iiliji <0G

When possible, a stronger form of convergence can be assumed, but thig is de-
pendent on the specific properties of the point process.

Many authors reduce the parameter space to a compact set, which is quite re-
alistic to do and done here too. The advantages are clear, simplifying many
proofs. In this case this practice can be extended to assuming:

lerf Se <M <o (3.28)
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M can be taken quite large, say more than the number of accidents that would
happen if every inhabitant of the world has a million accidents a day. It is rea-
sonable to assume that serious action would be taken if this number is only
remotely approached. However, from a theoretical point of view it is better not
to make many assumptions.

3.6.3  Unigueness of the solution

An important question is when the maximum likelihood solution is unique. A
heuristic starting point can be found in equation 3.10, from where it can be ar-
gued that, assuming asymptotically IS E — 0. ¢ and ¢y must be equal ds-
almost everywhere. This fact combined with a one-to-one relation between ¢
and ¢(#6, t), it is likely that, at least in the end, only one § is the solution. At
this point a finite case is dealt with. It is pursued to prove that for every # there
exists only one ét as the maximizer of the likelihood function.

A first note is that the loglikelihood function is continuous in both (7 and 4.
If 7 is slightly changed, a new 6 can be found close to the previous one. This
implies that if there exists a one-to-one mapping from (" to #, this mapping is
continuous.

What is shown next is that the Hessian in equation 3.23 is strictly negative def-

inite under certain circumstances. To do this, a combination of matrix algebra
and integral convergence theory is used. The crux is that

1
~ty = ([ KOO0
can be approximated arbitrarily well by H(6,n);; = —(1(8,n));; in:

T (8, 8)ds &
1(0.0) = 22O s ) (o)
k=1

using a not equally spaced grid, depending on the distribution ®. z;(8) is de-
fined in that manner by:

[T io1 T
‘Z'i(g)“oglgéz' A (0, 8)ds = n-—l/(, (0, s)ds

This is an adaptation of standard results otherwise found in numerical integra-
tion theory. It relies on the assumption that 0 < ¢(68,t) < oc for all 6 (in the
compact set).

On the other hand the matrix H (6, n) can be written as
H(f,n)=—-X(0,n)X(0,n),
X (6, n) being the matrix withrows ( f1(2:(9)), . . ., fa(2:(8))). Clearly, if the

column vectors are independent, H (6, n) will be strictly negative definite.

The fact that the columns in X (4, n) must be independent for all § as of some
n > ng > 0, can be translated in the notion that no function fi; can be written
as a linear combination of the other functions in all points on the interval [0, T,
which would mean that the columns are independent on all ;(#). While 4 is
assumed in a compact set, the point above can be easily proven.
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3.04

Consistency

Another observation is that the limiting Hessian, as defined in equation 3.27,
is strictly negative definite too. This is not true in the general case, but it holds
by the fact that the fy are purely periodic.

Clearly, the empirical Hessian H = — S2i%, f.(7) f,(7:) may not be definite
negative in all, small sample, cases.

The previous subsection yielded the continuous relation between the vectors (7
and # by means of the solution of the maximum likelihood problem.

In this subsection consistency of the estimators is studied. It has already been
shown that for every T' there is only one maximizing value 6. If the amount of
information sequentially increases, the question rises whether there is a limit
of the sequence of subsequent estimates of ¢, and how it is approached. The
key problem is of course the existence problem.

Basically two ways of increasing information are available, one replicating the
process, another by increasing the timeframe of observation. Only the last op-
tion is practical, but the first option is of theoretical interest. Both options es-
sentially result in increasing the number of observed points.

It is obvious that an important role is played by the point process integrals (',
as they determine # through the likelihood problem. It must be assumed, this
cannot be proved by itself, that C'7 converges in some sense to a function of T
or n. This feature implies some sort of stationarity of the process N,. In the case
of replication, this is obvious, but in the case T — oc this requires additional
assumptions. Probably the only key assumptionis that NV, < oo if ¢ < oc, but

N(t) — x as 1 — oo (3.29)

Instead of equation 3.21, a scaled version of the loglikelihood function is used:

N T
*C(’Tla e Tm) = (Z 91'(?1' - /O Q"\«Y(t)dt) /T

=0

Assume, at least in probability (compare equation 3.6.2):
t
() = t'1/ fu(s)dN(s) — ¢ Jexl <o VEe(0.... k)
0 (3.30)

This means that, given [cy| < oo forall 0 < M < ocand 0 < & < 1 there is
at’ > Osuchthatforall £ > ¢/ forall &:

PCW) —epl M) > 1 =46 (3.31)

Apart from assumptions on the existence of the limit (, [Serfling, 1980, The-
orem on page 24], establishes that if f is continuous with Fr-probability one,
then f(C%) — f((') accordingly. This theorem cannot be used directly.

Recall that 6, = g(t,c(t)). Convergence of g(t,y) fort — oc is studied first.
As is seen above, with any probability p, |y — ¢| £ M < oc can be assumed,
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thus y in some compact set. This allows to prove only pointwise convergence
of g(t,y) — g(y) — 0 which can be extended to uniform convergence on the

set {y : |y — | £ M}.

Pointwise convergence follows from the fact that the limiting Hessian exists
and that its eigenvalues are bounded away from zero see § 3.6.3.

Thus, given M and é small there exists a ' > 0 such that for all ¢ > 0 and
{y:ly—cl £ M} |g(ti,y) — g(t2, y)] <& t1,82 > 1’ and thus

Pllglty.y) — glta, y)| <€) 2 1 =0
which means

!](flail)—g(tzp?})“iﬂ t1,ty — 20

This implies, using (¢’ <t < k):
lg(t.e(t)) — glk. (k)] < |g(t.e(k)) — gl e(R))] +
gt c()) — g(. (1)) +
Yt
lg(t', (1)) — g(t' c(k))]

Zek

As seen above, both = and y; converge in probability to 0. By [Serfling, 1980,
Theorem on page 24] z;, converges in probability to 0. This proves

g(t,e(t)) — gk, c(k)) iy t ok — oo

3.6.5  Asymptotic normality

In this section, an attempt is made to estimate the error distribution about 6,
assuming the model is correctly specified. Treatment in the case of misspecifi-
cation can be found in White [1982].

#3 . ‘(J 0,. t'lS
Asseen above, 6, —# i 0,¢ — oo. It was assumed that limy . —fﬂp—(is—)—— =
p(6), together with N (2)/t -2~ ¢, ¢ — oo. It was found in § 3.6.3 that (" and @

are related, 6 is defined as the maximizing value of the loglikelihood function.
This means:

This results in:

t
(']k:/ frd(8,35)ds Yk
0

Because # is estimated consistently, ¢ may well be expanded about its true
value:

t fad ‘.
' :/ frexp((6 — )T f(s)b(s)ds Yk
0



3.7

3.7.1

Algorithm

Overview

because

exp((§—0)T fls)) = 1+ (6—60)T f(s)

it follows
i K R ¢
= / f;hcn(s)ds + Z(é’z — 91) / frfiols)ds (3.32)
0 —1 40

Define, noting a different notation of H:
— D the vectorof (C'y — [ fid(s)ds, ..., Cx — [y Frd(s)ds)’

— Hij = (fy f:fid(s)ds )i,
this results in:

(é —0= A7ID (3.3%
Thus
E((6-6)(6—6)")=H'E(DDT)H™!

E(DDT) can be computed through theorem 2.4. It turns out that £{ D DTy =
H . as defined above.

E((f-0)-0T)y=H" (3.34)

After this result, define # = H /t and resume from equation 3.33. Usually,
asymptotic normality is achieved by something similar to

s(t)(0, — 0) = (tH7 ) s(t)/t) D,
It is then argued that by:

(eat) L it (3.35)
and
(s()/t)D, -2 D ~ N(0,0?) (3.36)

that, by Slutski’s theorem:
s(t) (b, —0) 2 77D (3.37)

it is clear that equation 3.35 follows from equation 3.27. Equation 3.36 is not
trivial. Under current assumptions, the martingale ), converges to a (multi-
variate) normal distributed vector when suitably scaled by the martingale cen-
tral limit theorem.

In the previous section, the process of estimating a model is exposed. In this
section, an algorithm is discussed that uses such estimates to select another,
hopefully, better model, hoping that eventually the optimal model is found.
This optimal model is supposed to be a member of a certain class, of which
members can be selected.

Although in this particular case some sort of fourier system is used, the coeffi-
cients of the individual terms cannot be estimated independently. This means
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that a model selection scheme needs to be designed to cope with dependencies.

INT

17.08

1n.1e

Figure 4: Integrals of type [ fiezp(f;)dt.
For a number of indices the integrals are computed and plotted. Functions f;(¢) are
defined as, if 7 is odd: f;(f) = sin(1(¢ — 1)/2), otherwise f; (1) = cos({i/2).

In figure 4 computed values of integrals of [ f; exp( f;)dt are graphed. This is
one of the simplest cases where it can be seen that the terms are not indepen-
dent. It can easily be seen that simple examination of the point process integrals
> fr(ri) do not offer clear information on relevance of the components. It is
clear that estimates of the components will be dependent, as could also be seen
from equation 3.23.

The algorithm basically uses three steps:

1 Testing for convergence of the algorithm, not the estimation procedure.

2 Selecting terms to be deleted from the model.

3 Selecting candidate terms to be included in the next estimation procedure.
Other duties of the algorithm include checking if a certain model has already
been used.

The procedure is completed when either of the next conditions is met:

The first condition is convergence, achieved when the goodness of fit criterion
is met, see § 3.5.2. Usually this point completes the procedure, although some-
times the model can be simplified a little while satisfying goodness of fit. In
that case terms in the model are tested for relevance by a method described in
§3.7.2.

Altematively, the procedure cannot improve the solution anymore. This hap-
pens when no suitable terms are left to include. This can be the case because (a)
no terms are left at all or (b) all remaining terms are tested insignificant, Two
tests for this purpose are described in § 3.7.3 and § 3.7.4.

After a model has been estimated, all terms are sorted by increasing relevance

with respect to that model. The terms in the model are sorted according to
§ 3.7.2, the terms not in the model are sorted according to § 3.7.3 or § 3.74.
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3.7.2

3.7.3

If the algorithm indicates that it has not converged, that is the algorithm indi-
cates that the last estimated model does not satisfy convergence conditions. it
first checks whether it can remove any terms. This is done, starting with the
least relevant term, until all left over termsg test significant. Then {those) terms
are added (again) until a model is created that has not yet been estimated. If this
means that no terms have been deleted at all, the model adds new terms until
either a model is created that has not yet been estimated or all terms tested ir-
relevant. If the algorithm could not remove any term in the first place, so to say,
its guess was completely successtul, it can add one or more terms if instructed
to do so by a selection scheme described in § 3.7.5.

Tests for parameters in model

Gradient test

Suppose one is interested in the relevance of a parameter 6 in a model. Iden-
tify the model by its parameter vector g and the model. not using #. by 6. The
relevance of d;. can be seen comparing the model based on 0 to a model based
on 6.

Two approaches are commonly used to address this problem:

(DEstimate 6 by some means and evaluate the likelihood of ) Compare this
value with the original, usually by means of a likelihood ratio test.

(2)Study the surface of the likelihood function about 6 and see if it is likely that
the likelihood is reduced significantly when the parameter is removed.
Method (1) can be carried out by effectively re-estimating the model, or ap-
proximating 6. The latter option turned out too unreliable.

Obviously, method (1) is most reliable but can be very costly to implement
in practice. The alternative (2) is implemented through the Wald-test (Wald
[1943)). Its main attraction is that it is not necessary to estimate the alternative
model.

In fact in this problem, only a simple version of the test is necessary. Only the
test 8, = 0 is performed. Generally, define «(#) the constraint, define A =
(0a(8)]06y,...,0a(8)/00k) then:

W = —a(8) (AH ™ A')>" a(8)
This, in practice amounts to:
0
HEG!

W o= (3.38)

It is widely known that W is asymptotically y? distributed if Hy is true,

The techniques employed in this subsection are closely related to the tech-
niques in § 3.6.5. This test procedure is aimed at testing relevance of param-
eters not used in the model. In that sense it is similar to so-called Lagrange-
multiplier tests. It should predict the effect of adding a particular term to the
model. The test exposed and used here is designed to add only one termn at a
time to the model. Lagrange-multiplier tests can test the effects of adding mul-
tiple terms to the model.
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Suppose the model already contains » terms. These terms each have a certain
index 1;, the precise value thereof is not important here. The term & to be tested
for inclusion has some real index ¢y, but that value is also not relevant in this
section. Thus for brevity: §; = 6, and f; = f;.

Under Hy it is assumed that the model is correctly speciﬁed. This means that
H, states that §;, = 0. Moreover it is assumed that 4 is close to the true value
of 6. These assumptions should justify the use of the expansions below.

It is assumed that the true intensity function can be written like equation 3.20
é(s) = exp (Z gz'fi(‘g)) s €[0.7]
=1

The density function ¢(s) will be estimated by () using the estimate 6 of 6.
The log likelihood function is (see equation 3.21):

L(0)=0C - / (s)ds

in which (7 denotes the vector of point process integrals.

The maximum likelihood estimator @ is commonly defined as the value of 8 that
maximizes £(8). The mechanism of the test (and of the Lagrange-multiplier
tests) is based on the idea that the loglikelihood can be improved when it has
a non-zero derivative with respect to some parameter. Of course, the deriva-
tives with respect to the parameter already in the model are all zero. Thus the
derivatives with respect to all non-used terms are evaluated and judged, recall
equation 3.22;

dL(8) L N
( 09, >B:é _(‘k_/fk(w")¢(8)(lq

and equation 3.32:

(kw/fkcé dc—i»Z(é’——Q /fkfl(f) Yds

i=1

Then, using equation 3.33 and defining

Vk / frfro(s)ds, . / fufud(s)ds)'.
we get:
t
Sp= - / Ffrd(s)ds — ol
0

The vectors D and vy, and the matrix H could be extended by one dimension
unit to accommodate k, or the term % represents, to get:

we= (o). Re=(0lCs— [ feols)as)
and

Ay = B[Ry R
This results in:

Sk = ’wz‘_ Rk (339)

)
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Under Hg, Sy will be approximately normal distributed with mean 0 and vari-
ance uiAkwk. The expression '“’LA xwy can be simplified further.

The alternative is the Lagrange-multiplier test. This test needs a (possibly

large) matrix inversion for every tested parameter. It then amounts to, using
- i ~

re =i — fy frels)ds:

e 2y 4T
Lﬁ’[;& = 7k(~‘4k )?(,-i—l‘u-i*l

Although the Lagrange-multiplier test may be a useful test. it is not used be-
cause it also needs computation of the integral and it needs a sometimes time-
consuming matrix inversion. Another disadvantage is, albeit only to some ex-
tent, that the method is incompatible with the method in § 3.7 4. Some compu-
tational relief can be found by applying the Sherman-Morrison formula [Press,
Flannery, Teukalsky & Vetterling, 1989, p.75]. This formula can be used to in-
vert a matrix when the inverse of a similarmatrix is known. This similar matrix
being the covariance matrix of the parameters in the model.

374  Approximate gradient test

The derivation of the approximate test needs a little explanation. The main
reason for using an approximate test instead of a less approximate test as in
§ 3.7.3 will be determined by computational considerations. The reason for de-
veloping this test is the sometimes herculean effort needed to compute a (very)
large number of strongly periodical numerical integrals. This can be very time-
consuming. This case arises when a large mumber of accidents is analysed over
anumber of years that have a strong daily pattern. Although this kind of prob-
lem may not occur very often, some preparations can be made in advance.

A few options are available to lighten the computational burden. First and fore-
most, restricting the number of times all integrals have to be computed. This
is done to some extent by a step described in § 3.7.5, where a (heuristic) strat-
egy is exposed that ‘makes larger steps’ in the selection scheme. Of course it
is hoped that those steps don’t include too much terms that have to be rejected
at second sight, which can be a major drawback.

Another option is to reduce the number of integrals that have to be evalu-
ated. This method is based on partial infegration and exploiting properties
of trigonometric functions. The trick is to expand a function in two differ-
ent functions in an practical way. For instance, f(z) = g(2) + h(2) then
J fla)dz = [ g(z)dz+ [ h(z)dz. Doing this in a clever manner, having com-
puted [ ¢(z)dz already means by computing [ f(z)dz we get [ h{x)dx(for
free). More details follow.

It is agsumed that the functions f;, 7 > 0 obey the following rules:

— fo is constant.

— fi(s) is continuous and differentiable with respect to s on [0, 7.

- Thesetof functions 7 = {f;|i = 1,2,...}U{fo}is closed under products,
thatis, f; f; can be written as a linear combination of elements of 7.

— withrespect to s, 7 is closed under both differentiation and integration. Con-
sequently, f; is infinitely differentiable and integrable on [0, T'].



The set of functions used here obeys these rules. Recall:

&) = Z 0 fi(t) (1)

=1

For k > 0, if the right model is specified:

t i t
/ futds = [Fedlt — > 0; / Fiflods (3.40)
0 =1 0

This relation is to be exploited in this subsection. Alternatively, the relation
holds for the estimated case. It doesn’t rely on the model heing correctly spec-
ified.

t " R . i . i R
frods = [Folg — > 6 / Fyflods (341
a im1 0

It is noted that the latter kind of integrals: [} Fy f! éd.s can be expanded into two
integrals of type « f; f;., ods and 3 ¥ ﬂc:bds. The main object of the test is to
find out whether ornot [ fr.dN = [ f ods. Under Ho, the model is correctly
specified, this is the case. The idea is to simply put [ *d N in place of [ *dds
in equation 3.41 and test equivalence of:

4 ~ 7 N ¢
/ edN (s) = [Fedly — 36 / Fy flAN (s) (3.42)
<0 i=1 o

as §; and Js F.fldN(s) are not independent, a test based on this is biased.
Equation 342 and equation 3.41 are not even asymptotically equivalent. It is
assumed that the bias is negligible with respect to the variance. Moreover, this
test may not be used to test parameters in the final stages. It may serve as an
intermediate to speed things up.

With respect to equation 3.41, it can be seen that f(f fréds can be expressed
as a combination of other integrals. It seems attractive to select the most com-
plex integral on the right side of equation 3.41 and solve for this equation by
computing the others. This scheme enables the (recursive) computation of all
integrals from some starting point. This starting point is at most right above the
most complex term used in the model. A few notes however: X

— Fortunately, this is a numerical scheme so stochastic properties of § are of
no influence.

— Unfortunately, the method relies strongly on the precision at which the inte-
grals are computed.

— The method only works for the terms with complexity larger than the max-
imum complexity in the (estimated) model. This means that if the maximum
number of terms is estimated well in advance, this number will not be much
higher then the maximum complexity in the model. This in tum means that
the advantage is only based on not having to compute integrals for a relatively
small number of terms.

— If the parameter #,, of the most complex term in the model is rather small,
this also adds to the numerical instability of the procedure,

The above sketched notes help to establish the conclusion that the recursive
method may not be reliable in general and it is skipped therefore. Computa-
tional advantages are doubtful too.



On the other hand, a test based on equation 3.42 appears to be useful. The test
is notused without the backing of § 3.7.3. ‘Critical’ terms are tested by § 3.7.3.
The test statistic is defined as:

~ .t , . no i
Se= [ fdN(s) = [Fdlo+ 30 [ FefidNis) (343)
v =1 0

It is assumed that the distribution of 5, has a mean value of approximately nil.

It is also assumed that .5, |/52(S A) reflects the order of the likelihood under H,
of the individual terms being nil. %( S';J can be computed assuming a multidi-
mensional normal distribution. In order to compute the covariances involving
] equation 3.34 is used to express terms of §; in terms of simple point process
integrals. The terms f(f x f{dN(s) are also expanded into simple point pro-
cess integrals. Then theorem 2.4 is used to compute the variance. It tumns out
that second order terms can be neglected:

o*(zy) = pta*(y) + /l, X (z) + 2ugpycon(z,y)
* cov?(z,y) + cov(z, zicov(y, y)
~ plot(y) + ,u,;icrz(;z:) + 2uppycoviz,y)

The above derived method won't work for fp and f_y. Integrals for these func-
tions will have to be computed in the classical manner.

3.7.5  Selecting more terms at a time

The algorithm defined so far is based on the idea that only one new term at a
time is included in the model. Then while systematically checking the useful-
ness of terms already in the model, terms are added as long as that seems neces-
sary, until convergence is met. When a complex system is to be estimated, this
means that quite a few steps must be made, each needing a full gradient test and
a full goodness-of-fit test. It seems useful to add a few controlled leaps to this
process, in order to speed things up. This subsection describes a way of doing
this.

This method is based on the idea that the Hessian of the loglikelihood should
not have too different eigenvalues. In more practical language this means there
should be little dependence between the terms in the model. The implementa-
tion is again based on the idea that [ f; f;,g)d s = [ fif;dN(s) when the model
is correctly specified.

The method is used after the parameters have been selected by a combination
of either § 3.7.3 or § 3.7.4. This defines a queue of terms of which step by step
a term is added until one of the following events occur:

— No terms are available or the maximum number of terms to be added is over-
drawn. This parameter should be user supplied.

— The next term did not test significant in the sense of § 3.7.3. The terms that
could possibly be included in the model are always tested by § 3.7.3. These
terms are among the ‘critical’ terms mentioned in § 3.7.4.

This step supplies an ordered range of terms from which terms can be selected.
While waiting for the above mentioned event to occur, the procedure computes
a relative effect of adding up to a particular term to the model. This effect is the
condition of the Hessian, which is the quotient of the largest and the smallest
eigenvalues of the Hessian. This value could be computed by computing (part
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of) the eigenvalue spectrum. This method can be costly in some cases. As the
method is not needed to work perfectly, the condition is estimated by estimat-
ing the largest and the smallest eigenvalue of the empirical Hessian using the
theorem of Gershgorin, [Stoer & Bulirsch, 1980, p. 385]: The union of all disks

Ri=peCllp—as £ lan
ko

contains all eigenvalues of the » X n matrix 4 = [a;;]. Thus the maximum and
minimum in R of this set are used.

While adding at least one term, it is hoped that the number of terms just before
the greatest jump is a good candidate to use in the next algorithmic step.



4.

4.1

Extensions

As it is defined so far, the model may not be very useful in practice. Some ex-
tensions have to be made in order to get some information from an analysis.
Uses of data analysis generally are in one of two categories:

(DRetrospective analysis. Roughly, finding out what happened after it hap-
pened

(2)Prospective analysis. Roughly, what is likely to happen in the future.

Both types, but mainly (2), are deeply buried in assumptions. Case (1) could be
divided into a pure phenomenalistic part and an exploratory part. The first is to
find out what the intensity was at a certain timepoint, no matter what caused it
to be that way.

More often one will try to explain the nature of the process using exogenous
variables. See § 4.1 for some remarks on the use of exogenous variables.

Probably the most interesting application is prediction. Prediction is not meant
in the sense of predicting the times accidents occur. The main interest will be
the expected number of accidents in a time period. Another may be the conclu-
sion that the number of accidents of a certain kind seems to rise or not.

The prediction above is meant in a literal sense. Another application of predic-
tion schemes is ‘prediction of the past’. This is explained in conjunction with
intervention analysis in § 4.3. Prediction in general is a subject in § 4.2

Exogenous variables

The inclusion of exogenous variables seems a quite straightforward job. It is
best to note that exogenous variables could be regarded as simple functions z,
of the time. Only a few remarks have to be made. As a consequence of § 3.3.3,
it seems highly advisable to assume the functions induced by exogenous vari-
ables to be continuous in £. This would keep ¢ continuous. In most cases this
may not be an unreasonable assumption anyway. lts main advantage will be
less sensitivity to local aberrations, both in the choice of the change points of
the external function and in the accident points around the same point. This is
not a compelling advise though.

Relevance of exogenous variables that are not included in the model can be
tested through § 3.7.3 but in general not through § 3.7.4. Relevance of exoge-
nous variables that are in the model can be tested through the Wald-test, see
§ 3.7.2. No exogenous variables have been used here. It may be useful to give
(some) exogenous variables a special role in the model selection process. Inn
that case they should be exempt from removal of the model. If one is interested
in a comparison of solutions with and without certain exogenous variables, it
seems attractive to have control over their inclusion in the model.

Another (small) advantage of the continuity of the functions defined by the ex-
ogenous variables is that their integrals with respect to ¢ are more easily com-
puted.



Suppose «(t) has points of discontinuity in zy. . ... z.. then:

/513(<5')95(~§)(l‘1;
= Z (/:: z(s)¢p(s)ds + ¢(x;) (lglllzg z(s) — .1311;3 :1:(.«;)))

1=1 i

This of course is not a serious problem, but it can complicate things.

A completely different point of view on exogenous variables is to compare the
estimated intensity function to some exogenous variables. This case seems a
little out of scope here, so it is omitted. A particular application of exogenous
variables is highlighted in section § 4.3.

4.2 Some derived statistics

A number of statistics can be derived from a solution of the model. The main
statistic will be the solution vector and its covariance matrix, as the solution
vector is assumed to be normally distributed. Most statistics, if not all, will be
derived from these.

4.2.1  The intensity at time t

An obvious choice. Technically this could be divided into prediction and filter-
ing, computation outside the interval of estimation or computation ingide the
interval of estimation. It has to be stressed that great care must be taken us-
ing models to predict behaviour outside their interval of estimation, but usu-
ally itis the only available option, particularly if one is dealing with the future.
As compared to prediction methods using transfer functions, as is common in
timeseries modelling, no information is available on the decrease in prediction
quality as the (lead) time increases. This may be a serious shortcoming of the
method in this context. The confidence interval of the prediction is only based
on the distribution of the parameters, not on the time elapsed. This may not be
a big problem if a short period ahead is predicted. The rest is simple. Assume
H is the covariance matrix of 6, the exponent is computed as

k12
W(t) =D 0:fi(t)  (t) = exp(u(t))
=1
and o((t)) = YL, "y fi(t) f;(t) Hy; Using this result a confidence in-
terval can be computed, using normality assumptions. This results in (¢) €
[v91(t), ¥, (t)]. Tt is then assumed that ¢(2) € [exp(wi(t)), exp(vu(t))].

4.2.2  The cumulated residuals at time 1

Another application is the equivalent of a cusum (cumulative sum) analysis in
timeseries analysis or quality control. In this context it is a comparison of ob-
served points to the predictions of the model. Essentially this is the cumulated
residual of the model up to time ¢:

t ~
C'R(t) = N(1) —/ d(s)ds 2> 1 @.D
0



This function can be defined both within the timeframe of estimation and out-
side the timeframe of estimation. The latter will be the usual application.

The version within the timeframe of estimation is usually used in the context of
goodness-of-fit analysis, see § 3.5.2 for more details. The alternative is usually
used to test model validity to support predictions. Technically, referring to cu-
mulative sum techniques, the cumulative residual technique is used to find out
if or when the data diverges from the model. Ideally it is found that the model
seems to fit the data well after the estimation interval, suggesting the model
might also do so in the future. Other applications include intervention analysis
in§4.3.

It is assumed that the accidents after the timeframe are independent (or its de-
pendence can be neglected) of the accidents within the timeframe, based on
which the parameters are estimated. Therefore it is assumed that the error distri-
butions in N (¢) — N (tp) and ¢ are independent. Then, using the usual normal-
ity assumptions, a confidence interval for (' R(¢) in equation 4.1 can be com-
puted. Under Hy, the model being correctly specified and valid after estimation
period: tg > T, T the end of the estimation period.

CHCR(E) = 0N (1) — N{to)) + o?«(f B(s)ds)

Then it is (only) assumed that o2(N(t) — N(ty)) = fzi, o(s)ds and that
a?( [tto &(s)ds) can be well approximated to first order by:

t A
02(/ o(s)ds) =g'Hg
i

G
H is the covariance matrix of 6 and g = (ft‘; (9(s)/08)ds. One problem that
isnotsolvedisthat (N (t)—=N(to)) = f:o ¢(s)ds may not be a very good ap-
proximation because something similar to overdispersion or underdispersion
might occur. This will influence the results, by systematically estimating the
variance incorrectly.

4.2.3  The integrated intensity at time t

The integrated intensity is the integral of the intensity alone. It can be viewed
as a combination of § 4.2.1 and § 4.2.2. The main difference will be that it is
computed for intervals. Thus:

TN
I—Int(tk) ———/ qﬁ(s)ds 4.2)

79

Computation of confidence intervals is almost equivalent to the case of §4.2.2,
except for the fact that the variance of separate intervals may not add up to the
variance of the joined interval. This can be seen by:

(g1 +92)' H(g1 + g2) # g1 Hg1 + ghH g

The difference 2¢1 H g, may not cancel outside the interval of estimation.
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4.3

Intervention analysis

As already mentioned, intervention analysis is an application of this method.
As of Box & Tiao [1975] and earlier, a large number of applications have been
proposed, including Harvey [1985], with application to road safety research
Harvey [1986] and using the same method Ernst & Briining [ 1990] also inroad
safety research. Although these methods are based on different assumptions, a
few of these viewpoints can be used in this context:

— An intervention can cause more that just a change in level. In applied work
one should not lose the main object under investigation. In most traffic safety
work the prime interest is (the number of) accidents or casualties. Sometimes it
can be useful to study a change in the pattern, not just the sheer number. Clearly
the prime interest is some function of the process.

— The use of control groups in experimental research is essential: a change
found in some process should always be supported by not finding a similar
change in another (relevant) process. This suggests the use of multivariate
models, analysing more processes at one time.

— Multivariate models are difficult to handle and good implementations seem
rare to find. [Harvey, 1985, p 39] states that, under certain (homogeneity) con-
ditions the single dimensional (single equation in terms of Harvey [1985])
model might suffice. It seems more recent work (f.i Kendall & Ord [1990])
hardly improves this situation. This means that experimental groups and con-
trol groups must be analysed separately in most cases, our case is 1o exception.
— Apart from time series technicalities, it seems cardinal to identify interven-
tions first ‘by them selves’, for instance using a cumulative sum technique, used
by Harvey [1986] but not by Box & Tiao [1975]. This technique works as fol-
lows: assume an intervention is supposed to take place at time £,. Then a time
series is estimated (or identified) up to a time point {5 well before ;. What is
meant by ‘well before’ will be the ever retumning expert’s guess. Then the es-
timated model is used to predict the observations as of t,. This is analysed by
the cumulative sum technique. Hopefully, the model seems to fit for some time
after g, supporting the suggestion that the model is correctly identified. If the
intervention really had an effect, it is assumed that the model diverges, or bet-
ter, misfits, after or about 4. This method should be favored over methods that
simply use plug-in type dummy variables representing interventions, and val-
idations of those interventions based on the importance of those dummy vari-
ables in those models. Not seldom one seems to find a significant effect using
a dummy variable while the true intervention point is at some other time and
the change in the series is due to something else. Therefore it is regarded as
favorable to estimate the intervention time before modeling it. Of course, the
estimate of the intervention time may differ a little from the intervention time
that is to be modeled, but it may not be too far off to allow for alternative ex-
planations. If the intervention is positively identified, then (possibly dummy)
exogenous methods can be used. One problem of the above mentioned method
is clearly the availability of sufficient data, particularly before the intervention
point. This is a particular problem in the area of traffic safety where some-
times interventions are executed shortly after a problem is identified or suit-
ably measured. It is a rare case where a problem is identified and studied for
a number of years before some intervention is made. It usually results in non-
systematic information (changing over time) and statistical problems thereof.
At this point the model is restricted to the search of interventions points only.
Both the cumulative sum and the ‘before-after’ techniques are supported, al-
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though the cumulative sum technique is emphasized. Implementation of the
cumulative sum technique can be found in § 4.2.2.

In Chapter 5 and Chapter 6 examples are shown.
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5.

5.1

5.2

The simulation of problems

Overview

Obviously, introduction of a new method or even a new implementation re-
quires careful testing. In this section results of some testing are shown. Hope-
fully it covers a sufficiently broad spectrum of problems.

As mentioned in various previous sections, the intensity function is assumed
to be an element of a certain class. This class is taken to be like equation 3.24.
A predominant class of tests is based on that assumption. Another situation is
when the true intensity is not in that class. From another point of view, stoch-
astic properties can be studied. These consist of asymptotic results, overdisper-
sion and the like. The first is done here, albeit approximately, the second is not.
It is omitted mainly to reduce the amount of work involved and the necessity
of adapting the simulation process. What has been done in this direction is a
little degenerated, removing all stochastics in the simulation. This was done in
the early stages and not reported here.

Apart from testing the estimation process, the derived statistics can be studied
too. Particularly the cumulative sum techniques need attention. Results can be
found in § 5.4.

Simulating accident data

In this subsection a strategy is shown for simulating data. It is mainly based
on [Grandell, 1990, lemma 4 and lemma 5, page 34]. This lemma states that
non-homogenous Poisson processes can be converted in homogenous Poisson
processes and vice-versa. This is done through a time transformation.

The procedure is now as follows:

(1)Generate an intensity function that has the required properties.
(2)Define the interval of estimation, denote it by [to, T'.

(3)Produce exponentially distributed random data points 64, d2, . .. and:
(4)Compute ; as the solution of:

Ik
/ o(s)ds = 6 (5.1)

b1

(5)Stop if the number of points reaches a specified maximum or if 7 < #,,41.
Then n points have been simulated.

Alongside this simulation a number of statistics are being computed. These are
merely designed to relieve the experimenter when the model fails to fit the data
in a sufficient manner by testing the true intensity by a Kolmogorov-Smimov
test or when certain properties could not be recovered from the analysis. For
these cases the internal Wald test (§ 3.7.2) is computed to test whether the true
parameters could be identified at all from the data. These tests can fail to give
the expected results because of the random nature of the experiments and, prob-
ably most important, because not enough data is used to identify the model
properly.



5.3

54

54.1

Concluding, only Poisson models have been used to test here. Apart from ex-
ponential intensity functions, quadratic models have been used.

Practical problems

Some examples

A few practical problems are noteworthy.

— Equation 5.1 cannot be solved analytically. This could have been solved by
a numerical method but this was deemed (again) too computationally inten-
sive in case many points are simulated. It was chosen to approximate the in-
tengity function by a stepfunction. This relieved the previous problem butitin-
troduced the possibility of the Gibbs-phenomenon, well known from spectral
analysis (unexpected peaks due to the ‘sharp edges’ created by the stepfunc-
tion). It should be bome in mind that this effect can occur. It also restricted the
maximum complexity of the simulations somewhat.

— The expected number of simulated points is an attractive feature to have con-
trol over. This means that, given randomly chosen parameters 8;, it effectively
modifies the generated parameters by forcing [ ¢ds = n for some n. This in
turn results in a not independent generation of the parameters. This last effect
has been neglected.

— In the simulations, the number of expected points is controlled. The random
simulated parameter values generally do not result in an intensity with the ex-
pected number of points. A correction scheme is designed for this. The correc-
tion scheme of the expected number of points is different for exponential mod-
els and quadratic models, although the mathematical mechanism is the same.
Simply ¢ is multiplied by a constant. In the exponential case this merely results
in changing 6y, in the quadratic case all parameters are multiplied. Adding a
constant to &y in this case leads to relative flattening of the resulting intensity
function, yielding unidentifiable parameters, which was found unwanted.
Alongside the points, a dataset is created containing the true intensity and an
estimate of it based on the generated points using the kemel-method of § 3.4,
The choice of the kemel width was based on the maximum complexity of the
simulation. This number was thus known ahead, which does not reflect reai-
ity. The results can be seen as indicative, and can be used to compare with the
estimated intensity generated by the maximum likelihood method.

n — oo and more

In this simulation an intensity function consisting of five terms, level, cos(xt),
cos(2mt), cos(4rt) and sin(4xt) is used. No trend was included. The simu-
lation ranged from 0 to 4, thus containing two entire cycles. The models were
estimated on the data of the first period (0 to 2). A total number of points of
1000, 3000, 5000 and 7000 were anticipated for the total period, so about half
of them were used in actual estimations. This is the most important reason for
not including a trend in the model.

The terms, and some results are listed in table 1. The level term was omitted in
table 1 because its value is different depending on the number of points. The
first model (n = 1000) failed to identify the parameters correctly using the
standard scheme. It did identify the parameters when the analysis was extended
until also the gradient test was satisfied. This method is now called the extended
model.
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Coefficien n=1000 n=3000 n=5000 n=7000
cos(mt) -0.769 -0.6097 -0.6026 -0.6383
cos(27 1) 0.000 0.5425 0.6159 0.5639
cos(4r t) 0.000 -0.2203 -0.2245 -0.2101
sin(4rt) 0.000 -0.1906 -0.2043 -0.2197

Table 1: Subsequent values of the parameter estimates while increasing n.

The following figures show the prediction (or restoration) of the intensity func-
tion. In figure 5 (n = 1000), figure 20 (n = 3000),figure 21 (n = H000) and
figure 22 (n = 7000), the (95%) upper and lower limit are graphed together
with the true intensity function. It is visible that the intensity is not perfectly
contained in the confidence region in figure 5. This graph uses the extended
model. It may be the case that the model is not functioning very well at this
number of points or the confidence ranges may be too small, because the de-
viance is not that much so it seems. In the other graphs. no such problems oc-
cur. These graphs, figure 20 (n = 3000), figure 21 (» = 5000) and figure 22
{(n = T000) are listed in the appendix.
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Figure 5: Predictions and true intensity of n = 1000.
In contrast to the models based on more points, this model seems to show an insufficient
confidence region. This problem sometimes arises when few points are used. Of course,
this can also be caused by the random nature of the model.

Another feature is the cumulative residual, see § 4.2.2. In the following the fig-
ures are figure 6 (n = 1000), figure 7 (n = 1000) and figure 8 (n = 7000),
figure 23 (n = 3000), figure 24 (n = 5000) are in the appendix. The most
striking effect may be the fact that in figure 8 (n = T7000) the cumulative
residuals indicate a diversion from the model. This effect also surfaced in the
n = 10000-case (which is further omitted). In general, a tendency toward
‘breaking out’ through the lower limit seems to show up. This may be an indi-
cation of anon-symmetrical distribution, which is not assumed in § 4.2.2 where
normality is assumed. This phenomenon has not been studied further, although
there might be sufficient reason to do so.
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Figure 6: Cumulative residual graph of n. = 1000,
Note the relatively large fluctuations in the residuals. This is possibly due to premature
convergence. The estimation procedure was extended to satisfy integral tests as well.

The results are graphed in figure 7.
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Figure 7: Cumulative residual graph of n = 1000. Integral convergence

The model used to create these results satisfied both goodness of fit and the gradient
test of § 3.7.3. Clearly the results are better. Improvement of this kind is rare however,
in most cases the both results are identical. This may indicate that the goodness of fit
tests needs additional support in small-sample cases, which is not surprising.
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Figure 8: Cumulative residual graph of n = 7000.
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Another explanation may be that the prediction ‘lead’ is simply too long. Al-
though it sometimes seems to work pretty well, it may be risky to predict that
long ahead compared to the length of the estimation period. Extending the es-
timation like in the n = 1000 case did not solve this problem.

Yet another feature is the integrated predictions based on the integrated inten-
sity, see § 4.2.3. Using a more or less arbitrary 0.01 interval length, the number
of points in those intervals are graphed together with the confidence intervals
based on § 4.2.3. Although the method of computation is similar to the com-
putation of the cumulative residues, no indication seems to show up that the
lower limits seem to be to high. This supports the idea that the predictive pe-
riod is simply too long to be reliable in figure 8, although individual counts
seem to fit sufficiently.

15.0
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0.0 T T

Figure 9: Graph of integrated prediction interval and tabulated points n =
1000, extended estimation.

Figure 10: Graph of integrated prediction interval and tabulated points n =
7000.

The procedure is the same as for the predictions and the residues above. The
case (n = 1000, with extension) and (n = 7000) are graphed here in figure 9
(n = 1000) and figure 10. The others, figure 25 (n = 3000) and figure 26
(n = 5000) are in the appendix. Only rarely the number of observed points is
outside the confidence interval.
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4. Indicating underspecification

b

In this set of simulations a term is modified to a specific order. The object of
this simulationis to try identifying the case that the model is underspecified: the
maximum complexity is too small. The anticipated condition is that the gradi-
ent test (§ 3.7.3) indicates the model cannot be improved while the (modified)
Kolmogorov-Smimov test (§ 3.5.2) indicates lack of fit.

Term o
Trend 0.07870
cos(mt)” 0.04918
sin(27 t) 0.66789
sin(37¢) -(0.37012
cos(3mt) 048918
cos(207 t) 1.00000

Table 2: Parameters and terms used to test underspecification

*cos(7rt) did not test significant in the n = 1000 case. The wald test based on the true
parameter value was significantat the 3.03484 x 10~ ! level. The model did not identify
the term.,

In this case the new term is cos(20xt). The other terms are: trend, level,
cos(mt), sin(2xt), sin(3nt) and cos(3xt), see table 2.

20.0—

Figure 1l: Residues under misspecification and correct specification n =
1000, 8, = 1.0.

A model of order 25 is tested first. The model barely identifies the underspec-
ification. The modified Kolmogorov-Smimov test is significant at the level
0.0445 (0.0086 in the case of » = 5000). The unmodified Kolmogorov-
Smimov test is significant at the level 0.413. Another simulation, using 0.5 in-
stead of 1.0 as the coefficient of the extra term, could not identify at n = 1000.

The next figures show the residuals within the estimation interval. In figure 11
the lines of the misspecified and the sufficient specified models are drawn. The

improvementitis obvious. From the ‘misspecified’ line the order of the missing
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Figure 12: Residues under misspecificationn = 1000, 8, = 0.5.

term can be counted. This will not be as easy in general presumably. In figure 12
the case with §;, = 0.5 is drawn. The residues are less in magnitude. They turn
out to be insignificant (level 0.:348) in the modified Kolmogorov-Smimov test.
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Figure 13: Cumulative residual graph of n = 1000, underspecified case with
f, = 0.8.

Cumulative residues indicate deviance of the model in the most obvious manner. The
line on the bottom depicts the cumulative residues. Extending the model improves the
results importantly,

Following these results an intermediate model is simulated using 6, = 0.8.
This should be a barely identified case, which turned out 1o be the case. Then
predictions are drawn from this model. It should be shown that missing out the
term because it was not identified may not be that catastrophic. Two graphs are
drawn, figure 13 containing the results from a » = 1000 (the actual number in
[0,2] was n = 402) case with §; = 0.8. The model is obviously insufficient
for the period [2, 4]. The cumulative residues indicate this, again on the lower
bound. Extending the model to satisfy the gradient test yields a sufficient model
for [2,4]. These results are graphed in figure 14. From figure 13 it is clear that
in case predictions have to be made, estimating up to some time before the time
point of which the last data are available, is very important.
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Figure 14: Cumulative residual graph of n = 1000, underspecified case with
6. = 0.8 in extended setting.

Cumulative residues indicate no deviance of the model. Extending the model improved
the results considerably, compared to the not extended case. It must be noted that the
margins are much wider than those generated by the not extended case.

Term g
Trend -3,3427
Level 534323
sin(2mt) 5.6356
cos(287t) 1.5421
sin(31rt) 2.0013

Table 3: Parameters and terms used to test a non-exponential model

The quadratic case

This simulation is used to see whether the model works acceptably if the true
intensity function cannot be written as is supposed. Instead of a exponential
function, a quadratic function is used, retaining the positiveness of the intensity
function. As is done in the n — oc-case, the analysis is carried out in conjunc-
tion with a prediction. Again, points are sampled in the interval {0.4] and the
models are estimated using the information in [0, 2]. Then the period [2, 4] is
predicted. It already tumed out that this can be too big a period. In table 3 the
parameters are listed.

The model actually fits the following:
See figure 15 for a comparison of the estimated model and the simulated model.

In figure 16 the cumulative residues are graphed. The residues break out af the
end of the interval. See figure 17 for the integrated predictions.
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Figure 15: Predictions of n = 5000, quadratic case.

Predictions by the approximate model of table 4. Upper and lower bounds of the es-
timated exponential model are graphed together with the actual simulated quadratic
model.
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Figure 16: Cumulative residual graph of n = 5000, quadratic case.
Cumulative residues of the approximating exponential model of table 4. Only at the
end of the prediction period the mode! beaks out the lowerbound. Another example of
this feature. The extended model, convergence set at the gradient test as well does not
solve this problem.

50.04

Figure 17: Integrated Predictions of n = 5000, quadratic case.

Integrated Predictions of the approximating exponential model. The observed counts
rarely violate the confidence bounds in the estimation period. It can be doubted whether
this model would have been very useful in practice except for the fact that the process
is found to be periodic and decreasing. of table 4.
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Term f
Const 3.007
Trend -0.168
sin(27 t) 0.293
cos(wt) -0.066

Table 4: Parameters and terms estimated to fit a non-exponential model

544 Some conclusions

In general the model seems to work well. In almost all cases its predictive
power seemes (o be sufficient, although in some examples the periodicity is not
very well fitted. This particular problem exists mainly when few cycles have
heen observed. If the wave is substantial, but not too substantial, and the wave-
length is long compared to the total period, sometimes the estimated wave-
length is just off. This results in ‘wave’ residues. This means that only predic-
tions based over a longer integrated period can have satisfactory precision.

Another observation is that the model in the limited number of observations
case insufficiently indicates model deviance whereas the extended case, need-
ing satisfaction of both the goodness of fit test and the gradient test works bet-
ter. It is probably caused by lack of power of the goodness of fit in the small
sample case because this phenomenon does not surface in case of more obser-
vations. In case of similar simulations it seems not to happen anymore at about
n = 1000 observations really in the estimation procedure. In general this will
depend on both the number of terms and their values (and their interrelations).
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6.

Real life example

The maximum likelihood model is not designed to estimate simulated data. In
this section real data, consisting of injury accidents, are analysed. One problem
that shows up is the fact that the information necessary for an analysis is not
available in the distant past. Presently, information is available since 1979 and
in some respect, since 1976. This means theoretically data from 1976 to the
first half of 1993 can be analysed. In practice a shorter period of data has to
be analysed. This is because consistency in the data is needed, interpretations
change over time, and the registration lags for some accidents. In recent times,
a major upgrade in the data structure took place by 1-1-1983, which is now
chosen as tq, the starting point. This recent starting point precludes analysis of
safety-belt data and alcohol legislation.

A second consideration is that no exogenous variables can yet be included. This
means that any planned analysis of an intervention should involve an inter-
vention that did not influence the mobility of any kind or the use of particular
modes of transportation. This restriction implies analysis of interventions that
are not surrounded by important changes inusage of traffic. This happened for
instance in the oil-crisis in the early seventies, which is too early anyway, or a
quite recent possible intervention is the so called ‘ov-jaarkaart’ (season-ticket
valid for all public transport) for students. This seemed, not thoroughly proven
yet, to have reduced use of mopeds significantly, in favor of public transport.
Preliminary analysis indicates a sharp decrease in the total number of casualties
since introduction. But this happens in the younger age group as well. There
could be some other explanation too. This example cannot be analysed until
this lack of information is resolved. The German data in figure 1 are unavail-
able to the author at this level of disaggregation. Otherwise this would have
been an ideal option.

An option available is the introduction of reflective bands on or in wheels of
bicycles. Use of these became mandatory at 1-1-1987, but introduction pro-
gressed slowly. It was anticipated that the measure would not influence the use
of the bicycles at all and would only have an influence on side accidents in
which the bicycles are hit from the side. It is also assumed that the main effect
of the measure is in twilight or darkness, which is the most dangerous period
of the day for bicyclists.

The analysis of the data is used as an example, it is not intended as an traffic
safety analysis, in which many more considerations have to be made.

The analysis is based on two groups, the side impact group and the non-side im-
pact group. The definition of side impact is based on the manoeuvre, not based
on the physical point of impact on the bicycle. This is registered, (as far as it is
reliable) but it can be very misleading in this application. The analysis is based
on the first 3 years, thatis 1983, 1984 and 1985, the the lead period before the
supposed intervention is 1986, just before the intervention took place in 1987.
The first 3 year period produced 12277 side impact accidents, neglecting the
few two-bicycle accidents in the dataset that are due to the poor lighting ca-
pacities probably not influenced by the intervention. The number of non-side
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impact accidents was 26628 in the same period.

After some experimentation, a period of 7 years was found to be a reasonable
base period. This period is translated in a time of 2 in the analyses. The terms
listed in the respective tables reflect the fact. The side impact solution is listed
in table 5. The non-side impact solution is listed in table table 6.

term @ term g

Const 2.387 sin(182¢) 4.660 x 107%
sin(7t) —1.256 x 107! | sin(141¢) —4.832 x 1072
sin(28¢%) ~0.626 x 1072 | cos(H2t) —4.918 x 1072
cos(64t) 9.491 x 10~2 | sin{98t) 4.700 x 102
cos(Tt) —9.209 x 1072 | sin(23¢) 4577 x 102
cos(35%) ~7.951 x 102 am(»l t) 4.580 x 10—2
sin(48t) 7.818 x 1072 | cos(41%) ~-4.417 x 1072
cos(15¢) 1.090 x 1071 | sin(80t) —4.252 % 1072
sin{9t) 7.282 x 107% | sin(189¢) 4.207 x 1072
cos(14¢) —T.288 x 1072 | sin(130¢) 4.184 x 10™*
cos{112t) —6.927 x 1072 | cos(12t) 4367 x 1072
sin{66t) —6.796 x 1072 | sin(127¢) —4.073 x 10~2 z
cos{105¢%) —6.263 x 1072 | cos(hTt) 3.883 x 102
sin(14¢) —7.671 x 1072 | sin(105¢) 3.840 x 102
cos(115t) 5.157 x 1072 | cos(2t) 4.055 x 1072
sin(146t) ~4.932 x 1072

Table 5: The solution of the model based on the non-side impact acci-
dents(3ji7j)

The period of 7 years is translated in a time of 2. All terms are listed based on the
Wald test. The terms on top are tested most significant. All terms tested significant. The
adapted Kolmogorov-Smirnov test was (barely) significant at the 0.050265049 level.
Also a large number of points seem to be necessary. The gradient test was not satisfied.
A cumulative residual plot can be found in figure 18.

All terms listed tested significant on the Wald test. The terms on top tested most
significant. The adapted Kolmogorov-Smirmov test was (barely) significant at
the 0.050265049 level in the side impact case. Also a large number of terms
seemed to be necessary to get a sufficient fit. A cumulative residue plot can be
found in figure 8.

The non side impact case yielded a more attractive solution. The solution tested
well on the adapted Kolmogorov-Smimov test, the test was significant at the
0.117284009 level, and needed not much terms. A cumulative residue plot can
be found in figure 19.

The gradient test was not satisfied in either model.

What was hoped to see in figure 18 can be seen in figure 19, depicting the num-
ber of side accidents with at least one bicyclist involved. Unfortunately, even
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term 9 term ¢

Const 3.128 cos(1t) 5.755 x 1072
cos(Tt) —3.143 x 1071 | cos(24%) —1.051 x 101
sin(7t) —1.903 x 1071 | sin(28¢) ~T7.101 x 1072
sin(48t) 1.056 x 10~ | sin(63¢) ~6.427 x 1072
cos(15t) 1.295 x 107! | cos(76t) 3.898 x 102
sin(34t) 7.839 x 1072 | sin(251) 9.501 x 1072
cos(14 ) ~T7.956 x 1072 | sin(14¢) —4.284 x 1072
cos(141 ~5.937 x 1072 | cos(29t) 4.327 x 1072
(()C‘,(Z()t) 1.079 x 107! | cos(641) 2.756 x 1074

Table 6: The solution of the model based on the non-side impact acci-
dents(3ji7])

The period of 7 years is translated in a time of 2. All terms are listed based on the
Wald test. The terms on top are tested most significant. All terms tested significant.
The adapted Kolmogorov-Smirnov test was significant at the 0.117284009 level. The
gradient test was not satisfied. A cumulative residual plot can be found in figure 19.
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Figure 18: Residues of bicyclist side-impact

This model was estimated based on the first three years, 1983 — 1985, Around day 1460
the intervention should start its influence. Unfortunately, this is not clearly visible, if
at all. The wave in the estimated period may indicate a basic wave not in the model.
Inspecting the whole period, probably a 14-year base period may be needed. It has to
be doubted however, in recollection of the results in the simulation study, that such a
wave can be estimated reliably from the data.

after specific checking, this graph depicts the non-side impact accidents. The
effect of intervention should have started at around day 1462 (1987), so the
first year after the estimation period seems to be predicted well by the model.
Somewhere in the second halve of 1987 the model seems to divert slightly.
This may be caused by the short (3-year) estimation period. The sharp decrease
in the summer of 1988 may be the result of something special. It is thought
that this cannot be caused by the deteriorating prediction quality, because of
the sudden change. There seems to be no explanation of this phenomenon. The
sudden decrease can also be found in the side-impact accident residues. In this
case the peak is rather obscured by other peaks.
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Figure 19: Residues of bicyclist non side impact

What can be seen here is what was hoped to be seen in figure 18, depicting the number
of side accidents with at least one bicyclist involved. Unfortunately, even after specific
checking, this graph depicts the non-side impact accidents. The effect of intervention
should have started at around day 1462, so the first year after the estimation period
seems to be predicted well by the model. Somewhere in the second halve of 1987 the
model seems to divert slightly. This may be caused by the short (3-year) estimation pe-
riod. The sharp decrease in the summer of 1988 may be the result of something special.
It is thought that this cannot be caused by the deteriorating prediction quality, because
of the sudden change. Because the residues seem to proceed as before after some time,
it seems there has been a short period in which a relatively small number of accidents
occurred. This effect can also be seen in the side impact accidents, although it is rather
obscured by other disturbances.

From the traffic safety point of view, no conclusion can be drawn from these
results. This unfortunate resultis followed by the conclusion that problems may
have been caused by specification inflexibility. The problem in figure 18 may
have been caused by the fact that the system of functions is too tight. It seems
advisable to allow the user to specify certain functions ahead. For instance it
could be useful if the user can apply multiple systems to the model such as the
base model plus, in this case, a number of terms with wavelength of about 14-
years. This would limif the total number of estimable parameters. There is no
reason not to do this unless the total number of terms is too much and one needs
the scheme in § 3.7.4.
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7.

Conclusions

From the results so far it can be concluded that the project is not completed.
The model-method combination suffers from some shortcomings and could be
improved at a number of points.

The most eye-catching improvement would be improving the goodness of fit
test. It has already been seen that it does not seem to be very powerful in the
current implementation. Confidence in the model would improve if the power
of the test were increased. Some directions of research are available based on
Durbin [1973] and Pollard [1984].

Another point may be found in the general application of (asymptotical) nor-
mality assumptions. In § 4.2.2 a tendency toward ‘breaking out’ through the
lower limit of the cumulative residuals seems to show up. This may be an in-
dication of a non-symmetrical distribution of those residues. Normality is as-
sumed in § 4.2.2. This phenomenon should be studied further. Although not
observed, this phenomenon will occur in other situations as well. In general. it
could be studied if small sample tests can be derived for some of the tests used
here. In practice this may not be possible in all cases, if useful at all.

Not many robustness considerations have been applied so far. It has been found
that a misidentification of a seasonal effect had serious consequences on the
long-term predictions. Apart from the question of whether to use such predic-
tions at all, it can be argued that smali-term deviations in the data can have a
long term effect. This is partly due to the Fourier system in use and essentially
a consequence of long range functions.

The total number of parameters to be estimated may cause a statistical problem
on it’s own. It may be argued that this implementation is essentially a infinite
number of parameters problem, because no strict maximum of the complexity
is used or that maximum is ‘estimated’. It should be considered whether or not
this invalidates some of the assumptions.

Finally, by defining a good general goodness-of-fit criterion, this criterion can
be used to validate the original count data techniques as well. The goodness-of-
fit criterion itself thus may be very useful in practice, with or without a system
of functions.

In the conclusion, in § 3.7.5 (Selecting more terms in one time) the use of
the lagrange-multiplier test is omitted. It could be usetul to test a increasingly
longer version of # until either the lagrange multiplier test indicates insignif-
icance or the maximum number of terms that are allowed to be included is
reached.
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Appendix A. Figures

Al n — o simulation

Following are graphs of the predictions of the maximum likelihood model.
All graphs contain the upper and lower limits based on the estimated model,
together with the simulated intensity functions. From this view, it seems the
model estimated the intensity well.
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Figure 20: Predictions and true intensity of n = 3000.
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Figure 21: Predictions and true intensity of n = 5000.

Following are the Cumulative residuals of the n — oo simulation. The line
over the entire length is the cumulative residual. The lines starting off 2 are its
upper confidence level and the lower confidence level.

The last feature graphs of the case n — oc contain the results of the inte-
grated intensity functions. The interval length is 0.01, thus delivering 400 in-
tervals. For every interval the number of simulated points are counted. Also
both the upper and lower 5% confidence limits based on the respective mod-
els for these intervals are computed. Only in rare cases the number of points
seem out of the confidence bounds. This number does not question the validity
of the confidence limits. It seems the region could be smaller still.
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Figure 22: Predictions and true intensity of n = T000.
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Figure 23: Cumulative residual graph of n = 3000.
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Figure 24: Cumulative residual graph of n = 5000.
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Figure 25: Graph of integrated prediction interval and tabulated points n =
3000.
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Figure 26: Graph of integrated prediction interval and tabulared points n =

5000.
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