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Summary 

Presently, the usual method of analyzing accident data in time is through the 
analysis of the sequence of accident counts. Usually. the numher of accidents 
per month or even per annum is used. Results of this kind of anal ysis are influ­
enced hy the starting point of such a sequence ,md hy the length of the inter­
vals used. The aim of tIllS study is to investigate the possihilities for analyzing 
accident data independently of the choice of the length and consequently inde­
pendently of the choice of the starting point. This seems to be possible usmg 
the original points of time a,,<; recorded. 

Techniques developed are based on the Doob-Meyer decomposition of the sto­
chastic process of tile count of accidents. It is found that many techniques are 
readily available. 

It is assumed that the accident process has an intensity process. Under certain 
regularity conditions it is found that such an intensity function exists. It is at­
tempted to build a model based on an exponential variant of a Fourier system 
that estimates that intensity function. 

Some extensions, covering exogenous variables ,md intervention ,malysis are 
discussed. Finally, some simulations ,md a real life prohlem are given. 

It is found that tIle current implementation suffers from a non-optimal good­
ness-of-fit criterion and lacks the ability of inclusion of exogenous variahles. 
Apart from this, the Fourier system may be extended, possibly by wavelets. 
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Preface 

The main purpose of this work is to write a thesis in statistics, needed to com­
plete my studies in mathematics at Leiden University, Netherhmds. The sec­
ond reason to write this thesis was some dissatisfaction with the techniques 
available to me at my (already) long standing work at SWOy, a road safety 
research institute in the Netherlands. The idea was triggered at a discussion on 
the effects of seatbelts in cars. This discussion resulted in figure 1. As far as 
the discussion is concemed, the results of this thesis have not been applied in 
that direction yet. Most countlies introduced seatbelt legislation long before the 
accident times were recorded reliably enough. Other countries, like Italy, have 
introduced legislation in recent years together with other measures. 

Another aim was to get more sensitive methods. It is not yet clear if this aim 
has been reached, this should become apparent from empirical evidence. 

I wish to thank my tutor Dr Sara van de Geer very much f()r her help, patience 
and endurance, I could not have done without. Apart from her many thanks are 
directed to the library service of SWOY, in particular Dennis van der Braak, for 
I cannot do without them as well (not only for tins thesis). I also want to thank 
my colleagues at SWOY (in particular Dr Peter Poiak) for tIleir suggestions 
,md SWOY for letting me use accident data. 

Leiden, 1993. 
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1. Introduction 

1.1 The problem 

In tlle Netherlands an extensive procedure is conducted to register accidents 
occurring on roads. Among many characteristics the point of time at which dle 
accident occurred is recorded. This point of time is of course an approximation. 
Theoretically, the accuracy is up to one minute. In practice, however, most ac­
cidents are recorded at a precision of about fifteen minutes. 

The question arises wheilier it is possible to use dus infonnation in order to 
analyze the development of the occurrence rate of some kind of accident Cur­
rently, at best data conSisting monthly counts are ~malyzed. Tlus kind of method 
using dle number of accidents for a sequence of periods of time of a particular 
length is vulnerable to two kinds of problems, although sometimes no alter­
natives exist. Bodl problems are similar to the problems using lustograms in 
density estimation (see Hlirdle r 1990)). Both the choice of length and the start­
ing point influence the results of illl illlalysis. Sometimes these effects can be 
decisive (see figure l). 

600,...---------..-----, 

400 

200 
First year after --....... 
intervention 

o -I----r-----...----+----r----I 

--0-- Year=Jan-dec 

--0-- Year=aug-jul 

197X 1980 1982 1984 1986 1988 

Year 

Figure 1: Two alternative registrations of killed car occupants in West Ger­
many. 
In August 1984 the Gennan government introduced fines for not using safety-belts. 
This resulted in a sudden large increase in belt-usage. It was expected that this increase 
would result in a similar sudden decrease in the number of killed (front seated) car oc­
cupants. One series is the usual annual number of killed car occup,mts, the other is a 
reordered series consisting of the number of killed car occupants aggregated over the 
months August through July every year. It is Clearly visible that the traditional annual 
counts obscure a possible effect. Although the process of killed car occupants is more 
complex than the process of the accidents themselves, the example should be infonna­
tive. (Source:Statistisches Bundesmnt [1988]). 

In addition, a problem might be the obscuring of effects within the sample pe­
riod. In particular, iliis can be importilllt when an (intervention) analysis is con­
ducted on ,ill intervention that influences only a part of the day, specially when 
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1.2 Accident data 

it is not (yet) very well known how. More generally, a change in the structure 
of a periodic can be of interest by itself. 

The aim of the present study is to investigate the possibilities for analyzing ac­
cident data independently of tl1e choice of the size and consequently indepen­
dently of tl1e starting point. This seems to be possible using tl1e original points 
of time as recorded. 

On t11e theoretical side, one is tempted to assume tl1at at ,my point in time (or 

better: any time interval) a positive probability exists that an accident of some 
kind occurs. One should realize that this probability of the occurrence of an 
accident of a particular type is not constant over time. The possibility of an 
accident is heavily dependent on many variables, such as the presence of traf­
fic in tl1at interval, visibility conditions and so forth. Because these conditions 
may vary easily, it seems necessary to assume that tl1e accident probahilities 
also vary over time. Secondly, because conditions may ch,mge seemingly at 
random, it is attractive to assume the probabilities vary nmdomly, or at least to 
some extent. FurthemlOre, it is noted tl1at while probabilities of 'exotic' acci­
dents are slim, tl1ey are still nonzero! These <1-<;sumptions play a central role in 
the following discussion. 

Additional assumptions are: 
- The casualties as a result ofthe accidents do not signific,mtly affect the popu­
lation. 
- No more than one accident can happen at (exactly) the smue time. 
- 111e registration system is capable of ohserving accidents at any (realistic) 
rate. Registration will not be overrun causing periods where accidents can hy 
pass tl1e registration procedure without heing registered because the system 
CillU10t hillldle them. In practice however, this assumption is violated to some 
extent, mainly due to police workload. 
- There is not a so-called after effect: when an accident occurred, no period 
follows in which no other accident cm1 occur. 
- Accidents do not influence each other. When an accident causes ,mother ac­
cident both are seen as one accident. 1111s is implemented in practice in the 
Netherlands, although in the case of a 'pile-up', cars colliding later are usually 
seen <1-<; new accidents. 
It is assumed that the accident process, the process that seems to 'generate' ac­
cidents, is a result of: 
- The traffic volume. 
- The traffic participmlts. 
- Coincidental circumstances such as: 

- road works. 
- weather influences. 

The traffic volume will result in a sort-of base(Une) intensity process of tl1e 
number of traffic participillltS at risk at a certain time. In theory this process 
could he ohservable, hut even in a small country such as tl1e Netherlands tlns is 
practically impossible. TIns process, togetl1er witl1 some (generally unknown) 
d,mger process is supposed to generate a process that 'generates' d,mgerous 
situations, tl1at mayor may not result in accidents of some kind. 
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In Uris work, aspects OfUlis combination process, the accident process, are stud­
ied. It is mought mat Uris process has a sort of underlying intensity process mat 
is assumed having continuous pams, or at least it is stochastically not distin­
guishable from a continuous pam process. This intensity process. furUler called 
intensity function, is the main object of study in this work. 

AnoUler, more serious note is that for some types of accidents, the reliability of 
the registration is lower Ulan for oUler types, mainly due to differences in dam­
age (personal and material) ,md insurance matters (no-claim rebates). This re­
sults in Ule fact Ulat me accident process is only partially ohserved. This matter 
is addressed too. 
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2. Theoretical background of the intensity function 

2.1 Definitions 

Before starting, a few notations and defInitions should he agreed upon. First, 
it should he pointed out that only processes in one dimension are heing con­
sidered. Furthermore, the point-processes will he considered to mn hetween 0 
and 1, or other simple margins when appropriate. Because of the simplicity of 
transfol1ning hetween those various hounds the text will switch hetween those 
hounds for convenience. 

Definition 2.1. The point process Nt, t > ° is defined as the numher of acci­
dents (or events) that have occurred up to the point of time t, .Vt = Ll J( T, .::; 

t). Naturally, N t E NU{O}. A marked point process is a process in which every 
point has a mark, that is a property. In the traffic safety context this mark may 
indicate the kind of accident that occurred at time Ti. Finally a p-thinned-point 
process is a process Ni = Li [fiI( Ti .::; t), Ui conditionally independent given 
N. P( Ui = IIN) = 1 - 1'(Ui = 0IN) = p. p can he seen as the retention 
prohability of a point Ti. In tile traffic safety context tilis is tile prohahility of illl 
accident actually heing recorded. Ohviously, tile intensity of the thimled point 
process is p times the intensity of ti1e parent process. 

2.2 The Doob-Meyer theorem 

The Dooh-Meyer Decomposition [Karr, 1991, section 2.:1] offers tile tileory of 
tile existence of a so called compensator for every point process N t. This com­
pensator serves as ti1e integral oftlIe intensity function we are looking for. This 
tileorem cumulates in [Karr, 1991, Theorem 2.22) that states tllat for a point 
process satisfying the assumptions: 

Assumption 2.1. Let the point process N t induce tlle filtration:Ft in tl1e prob­
ability space (rI, P). Assume tile filtration (H) = Ht has tlle following 
properties: 
- H is right continuous. 
- Ho contains all P-null sets in 'Hex:; = Vt>o Ht. 
- N is adapted to (H), so:Ft ~ 'Ht -
- E(Nt } < XY for each relevantt. 

Theorem 2.1. There exists a unique random rneasure <P Oil R + such that: 
- The process <Pt is predictable with respect to (H). 
- For each nonnegative predictable process (': 

(2.1) 

<P is called the compensator of N. Not mentioned in [Karr, 1991, Theo­
rem 2.22J but mentioned in [Fleming & Harrington, 1991, Theorem 1.4.1] is 
that <Pt is an increasing process. 
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Corollary 2.2. Using (.' == 1: 

E[l! dNs] = E[l! d<Ps] 

Theorem 2.3. [Karr, 1991, Theorem 2.14 J the/allowing statements are equi­
valent: 
- <P is a compensator 0/ N. 
- The process lV[t = N t - <Pt is a (mean zero) martingale, with respect to the 
.filtration (H). 

In the case of thinning, the compensator of the p-thinned process is p<P /. 

It can he noted, as many authors do, that the point process N t can thus he de­
composed in a predictahle process <Pt and a non-predictahle process IVh What 
can he predicted, in <Pt> is mainly detennined hy the amount of infonnation in 
(H). Karr states [Karr, 1991, section 2.4] that the existence of a stochastic in­
tensity depends on the amount of infonnation in the filtration. In the extreme 
case tlmt tlle filtration contaiI1.<; all possible infomlation. the compensator will 
be non-stochastic and equivalent to the point process. thus non-continuous. The 
point process will be non-stochastic too in this extreme case. 

The next step might be to study under what circumstances (<P) has a (stoch­
astic) intensity (J) witll respect to a (Lebesque) measure. defined by: 

<Pt = It 4>s d8 (2.2) 

The mere existence of <P tllfough tlleorem 2.1 is not sufficient for the existence 
of an intensity function. What is left to prove is that it is reasonable that (<p) 
has a version tllat is almost surely differentiable. Sufficiency follows from tlle 
assumption that N is simple, i.e. no two accidents can happen at the same time. 
TIns assumption was already stated in the introduction. Heuristically, as a con­
sequence of equation 2.1 using [Karr, 1991, proof of theorem 2.14]: 

e( n, w) = [(s<u~t)[(WEA) 

is a non-negative, predictable process, so E( Nt - NsIA) = E( <Pt - <Ps lA). 
This can be rewritten to E(dNdA) = E(d<PtIA) for all A E Ht-. Because 
(<p) is predictable, thus <P t is measurable Witll respect to 7i t-, it follows: 

d<P t = E(dNt!Ht-) (2.3) 

Thus is defined tllough: 

(i)lclt =E (dNt/Ht-) 

=p (clNt = IIHt-) 

=p (clNt > °IHt-) 

(2.4) 

Definition 2.2. When existent, the intensity process is is defined tl1f(mgh 
<Pt = fc; 4>scls. Due to tlle fact tlle <Pt is increasing, it will be argued tllat the 
intensity is nonnegative. In addition the process is supposed to be bounded. 
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23 Consequences of the Doob-Meyer theorem 

As regards a.<;sumption2.1, often called the usual conditions, the first two points 
are generally met. In practice (H) will consist of the accident records ,md some 
other, supposedly relevant, infonllation. This results in the fact that the third 
assumption will be met as wlI. The last point is only oftheoretical importance. 
It will he met anytime someone survives to analyze the accident data, hut it 
imposes some constraints on possible models that cml be estimated. [Fleming 
& Harrington, 1991, Theorem 1.5.1J add to theorem 2.1 mld theorem 2.3 the 
result that the process 

Lt = fot CsdMs (2.5) 

is a (H) martingale under the conditions above with (' a bounded, (H) pre­
dictable process. Because E[Ld = 0, tllis gives: 

E[1/ (,'sdNsl = E[fot Csd1) 5] (2.6) 

which will play a central role toget11er with: 

Theorem 2.4. [Fleming & Harrington, 1991. adaptation of theorem 2.5.4J 
Under assumptions above (equation 25): 
- The process Lt is a (H)-martingale. 
- ELt = O. 0 :s; t < cx,. 

- V 111'( Ld = E f~ C;diJ! s, 0 :s; t < 00. 
Which can be generalizedfor Lit = J~ C'isdMs,i = L 2: 
- cov( LJtL2d = E f~ (,'1/.'2s([(1> s, 0 :s; t ex;, 

This theorem may help when tests are to be derived for various martingale es­
timators. 
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3. Estimating an intensity function 

When a function has to be estimated, an estimation criterion must be decided 
upon. Often estimators in the sense of least-squares or minimum risk are used. 
If there is no external reason to choose a particular criterion. other considera­
tions are used. These considerations include analytical tractability, numerical 
efficiency and robustness to some kind of disturbance. Even then quite a num­
her of criteria are available, among them minimizing least-squares, maximiz­
ing likelihood, partial likelihood, quasi-likelihood, M-estimators and probahly 
many more. The next (first) subsection is devoted to the maximum-likelihood 
criterion. Tins method is employed here. The second section exposes three pos­
sible least-squares-like criteria, the latter ofwltich is shown to be equivalent to 
the maximum likelihood criterion under certain circumstances. 

3.1 Derivation of the loglikelihood-function 

In this suhsection the 10gIikelihood is derived of both the numher of points and 
their locations. It is shown that this loglikelihood holds for a large class of point 
processes, not just Poisson processes, hecause tJleir properties are not used in 
its derivation. 

First, conditionally on n, P( tl = T1, ...• tn = T,,) is derived: 

n 

P(t1 = Tl,···, tn = Tn) = IT P(ti = Tdt1 = Tl,'" ,ti-1 = Ti-1) 

;=1 (3.1) 

Given the likelihood of a realization of the point process up to time t is now 
computed as follows: 
1) The last occurrence Tk < t is fOWld. Note that this time is not equal to t. 
2) Starting at TO == 0, tlle IikeIihoods of the occurrences of T;+1 after Ti are 
computed, of course 3-<;swning 71, ... ,7n is ,U1 ordered sample. 
3) If t is an occurrence time itself, the smne as 2) is done for t, otherwise the 
likelihood of no occurrence between time Tk and t is computed. 
What is needed is a fonnulation of tins likelihood. Define Tk, or for hrevity 
T, as the stochastic variahle of tile time of tJle next occurrence. It is assumed 
that its distribution is continuous, so tile re is no distinct timepoint that h3-<; a 
positive probability of occurrence. This means tIlat the distribution F can be 
differentiated. The density f of tile distrihution is derived next. 

It is important to note tIlat tI1e Iikelihoods ru'e always computed for points 
(times) in intervals that are open on tile left side: h = (Tk' 'XJ). Using tile 3-<;­
sumption that no two occurrences can happen at the srune time, tIlis meruls tIlat 
for every t there is an open environment tIlat contains no other occurrences. 
This allows the use of equation 2.3 and tIlrough tI1is equation 2.4. 
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The probability of 00 occurrence between the times t ,md t + .!:.it given no oc­
currences up to time t is: 

P(t ~ T < t + ~tlT 2: t) 
P( t ~ l' < t + .!:.it n l' 2: t) 

PIT 2: t) 

P(t ~ l' <t + .!:.it) 
P(T> t) 

Note that {I' 2: t} = {T < tY E H t-. Tins allows for the use of equation 2.4 
in equation 3.2, further using continuity of F in equation 3.3 it follows: 

) 1
. Pet ~ T < t + .!:.itlT 2: 

t = 1111 -----:--------'-
LltlO 

(3.2) 

1
. P(t ~ T < t+.!:.it)/.!:.it = lIn ----'---,----'---

LltlO P(T 2: t) 

f(t) 
1 - F{t) 

The right-hood part of equation 3.3 is commonly known a.', the hazard-function. 
Many sources, including Kalbfteisch & Prentice [1980] give properties of this 
relation, among them, adapted to the above sketched situation: 

f(T) =exp (log «/J(T)) -1: S)d8) 

( 
T ) 1 - F(T) =exp -1;; Q{S)d8 

Putting it all together: 

L{ Tl, ... ,Tn ) 

( r +1 ) n ( = f~XP - IT n q'J(s)ds IT f~Xp log ( 
• Tn k=l 

using 0 = TO ,md T.n+l = 1 or the final time point. Tins results in: 

n 1 

£(q),Tl, ... ,Tn) = 2: log(qJ(Tk)) -10 dJ(t)dt 
k=l 

as the loglikelihood. The maximum likelihood estimator of (;) of (j) is 

~ = argmax £( cp, T}, •.. ,Tn) 
,pES 

(3.4) 

with S a suitably chosen class of functions or sieve. see 3 3.3. I below. In the 
case of exogenous variables, the marginal likelihood is maximized. Let Ht be 
induced by N t ood the exogenous variables Yt> Yt predictable. Define for 1n, 

t; =~, ~N(ti) = N(t;) - N(ti-l) .!:.iY(td = Y ) - Y( ) .!:.i<I>(td = 
<I>(ti -<I>(ti-dthen: 

P(~N(td = :1;I,~Y(tl) = yj, ... ,~I\i( ,~Y(tm) = Ym) 

i=} 
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m 

= IT P(l:.Y(td = Yill:.N(td = :':1, 
i=l 

Now, assuming m large enough and N simple, :1:i = 1 Lf.f for some], Ti E 
(:(;i-1. thus: 

'In 

2: logtm)+xdog(l:.<l>(ti)))- 2:log('~(Tj)) 
;=1 j=1 

m r1 

~log (1 - l:.<l>(td)l-X, - - lo d;(t)dt 

g (;1:1, ... , ;rm-l , Yl, ... , Ym) some function not involving (the shape of) <!). 

This yields the same results as above. 

3.2 Optimality in the sense of least-squares 

Another way of viewing the optimality of the fit of a model is optimality in 
the sense of least-squares. In this particular case this could be defined as the 
integrated squared error, ISE. Traditionally: 

[8E* = r1 

(~(t) - </)(t))2dt 
.lo 
t A rl 

A 

= lo </i(t)cZt - 2 lo </)(t)(b(t)dt + c* 

or a weighted version 

rlA 
18E** = lo (4)(t) - 4>(t))2cZ<l>(t) 

r1 
A r1 

= lo </)2(t)cZ<l>(t) - 2 lo ~(t)q;(t)d<l>(t) + 

(3.5) 

0.6) 

Both versions are not as tractable as the integrated squared error of the 
log(9)) = 

r1 
A 

18E = lo (1j,(t) -1jJ(t))2cZ<l>(t) (3.7) 

= £l J,2(t)cZ<l>(t) - 211 ~!(t)1j,(t)d<l>(t) + c 
,0 0 (3.8) 

But equation 3.8 (and equation 3.6), are not empirically computable. On the 
other hand: 

argmax.c( 9~, T1, ... ,Tn) 
<PES 

== argmax.c( 9\ Tl, ... ,Tn) - e log( (/lo( t) )cZt + e 9~O( t )dt 
'l)ES lo .10 
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The following Cim be derived: 

£1 ( (j» 11 11 log - d<Po - (j)( t )dt + 
.0 <Po 0 0 

tldt= 

101 

log (1 + 6 - 1/'>0) d<Po - 101 

using log( 1 + :/:) ~ :1; - !x2 

t )dt + t (J)ol tldt io 

~ _~ )'1 (1) - 4)0)2 d<Po + r1 ((j) - </)0) d<Po 
2 ° <;~o io (/)0 

The integrated squared error of log( = 'Ij': 

r1 

(log«M -log(<t~0))2 d<Po = 
.10 

2 
(/) - 60 ) . ) d<Po 

~1J0 

r1 

tldt + t io .In 

using log( 1 + ;z;) ~ :1: tllls time instead of log( 1 + ;z;) ~ .1' + 

11 (q~ - ~o? 
~ , ds 

o 

t)dt = 

(3.10) 

Clearly, if q) is close enough to <;')0 to allow the linear approximation, tile maxi­
mum likelihood criterion (maximum in equation 3.9) is equivalent to tlle lea.<;t­
squares miIllIlluIll as in the version described in equation 3.8 ,md equation 3.10. 
Unfortunately, equation 3.8 cannot be evaluated but tlle maximum likelihood 
criterion can be used. 

3.3 Complexity considerations 

The previous two measures assess the deviation between the (estimated) model 
,md 'reality', usually tlmmgh observed data. It is well known that criteria ba.<;ed 
on one oftllese two alone may not suffice. TIllS can be clarified through the fol­
lowing example: suppose we have only one observation. The maximum likeli­
hood metllod will select a function as peaky as possible. It may be unjustified to 
assume that points can only occur at that very point, even tllOugh that is all in­
fonnation available. This may not be a very realistic example but it serves well 
as an introduction to the necessity of recoglllzing the complexity problem. 

Complexity can be defined in various ways. The example above shows peaked­
ness as a measure. A common measure is the relative steepness of a function, 
for insttmce: 

J (bl(:d)2 
-- d:/: 
40( x) 
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or in a weighted version, compare with Good's roughness penalty in § 3.3.2: 

J «1"(:1:) )211:]; 
(})( x ) 

Another is the maximum periodicity of the function. 

There seem to be two ways of restricting the complexity, regardless of the 
measure used. The most attractive method is the a-priori method in which, 
based 011 the observed data ,md possibly prior knowledge, a certain class of 
candidate functions is determined. Such a method is discussed in the next sec­
tion. Some methods attempt to restrict the model while estimating by adding 
a 'penalty'. Less attractive methods are a-posteriori methods, where a solution 
is scrutinized after the effort of estimation. 

3.3.1 The method (~fsieves 

3.3.2 Penalty methods 

A method similar to the method of sieves Grenander r 1981] (as described in 
(Snyder & Miller, 1990, p 147J or [Karr, 1991, p 229]) can be used to estimate 
the intensity function. This method is conceived around the use of so-called 
sieves, sets of functions with particular properties. The properties of the sieves 
are set in a marmer corresponding to the (number of) data-points used. It IS 

hoped that the (constrained) estimated intensity function converges to the true 
intensity function a..<; the number of points tends to infinity [Snyder & Miller. 
1990, p 148]. 

An alternative is to penalize the solution for its complexity. A method like the 
Akaike Information Criterion (AIC) Akaike [1973] could be used. This method 
is widely used but it focuses on the number of parameters used, not on the shape 
ofthe model itself. The AIC is employed as a comparative measure and is com­
puted after (model)estimation. Therefore it does not influence the actual para­
meter estimates. 

Another exanlple is Good's Nonparametric roughness penalty Good & Ga..<;k­
ins r 1971 J, applied in point processes in [Snyder & Miller, 1990, p 151]. This 
method is based on the Kullback's information divel'[~ence Kullback [1968] be­
tween a distribution and its shifted version. The method of Good & Ga..<;kins 
[1971] em plo yes the optimization of: 

w( =£(~i))-E(4~) (3.11) 

[Snyder & Miller, 1990, p 147] suggest the use of 

C( ') - J (<;&I(S))2 -1. 
(, <;? - Q ,'() u8 <Ps 

with Q suitably chosen. This results in a certain class of kemel estimators. 
Study in this direction is useful. 

3.3.3 Influenceful1ctiofls and Local-shift sensitivity 

From the theory of influence functions, [Hampel, Rousseeuw, Ronchetti & 
Stahel, 1986, chapter 21, the concept of local-shift sensitivity can be used. The 
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local-shift sensitivity measures the effect of an infInitesimal shift of a point 
fTom :1: to a neighboring point y. 

The concept of Local-shift sensitivity can be used to account for the ill accuracy 
of the observations themselves. Intuitively it is re,L')onahle to restrict the com­
plexity of the model based on observational precision. It is of no use to estimate 
a periodicity with a wavelength smaller than the error of ohservation. From a 
practical point of view itseems a quite reasonable idea to restrict the influence a 
standard 'deviation' of an observed point Ctill have on an estimate. With respect 
to an estimate of the intensity at a certain timepoint, tJle upper bound of the in­
fluence over all possible shifts of observations may be a reasonable mea')ure of 
admissibility of an estimate. In general, ilie upper bound for all timepoints in 
tJle interval may be applicable. Another consideration is what to compare ilii:-. 
measure with. It is probably useful to compare this influence with the uncer­
tainty due to tJ1e normal estimation procedure. 

3.4 Empirical characteristic function 

In [Stephens, 1986, par 4.16.5], goodness-of-fIt tests are suggested based on 
characteristic functions. This method can be used in tJle following manner. Es­
sentially, a<; suggested in [Stephens, 1986, par 4.16.5). tJle empirical character­
istic function '1n (s) is defined: 

0.12) 

Where T}, .. . ,Tn are the sample points. We could attempt to approximate 
the (assumed continuous) intensity function tJ1rough an approximate inverse 
Laplace-transform by: 

1 jT 
n,T(:1;) = -:;-

~7r -T 

This yields: 

multiplying by n to get tJ1e properly scaled intensity: 

,A (,) _ ~ sin(T (Ti - :1:)) 
(Pn,T·l: - ~ _ (_. _ :1') 

i=1 "'I . 
n 

= Lk(T,Ti,X) 
;=1 

(3.13) 

14) 

In this manner, 4&(;Z:) is estimated through kernels k(T. Ti':&)' As compared to 
more common kernels (see Hfudle [1990] in a general setting), kernels of tJlis 
type are smaller tJlan zero for some :1:, altJlough T. Ti. :1: = 1. 
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In [Stephens, 1986, par 4.16.5] t1le empirical characteristic function is used for 
goodness-of-fit statistics. Tests similar to Kolmogorov-Smimov and Cramer­
VOB Mises are suggested, SUPt 11'( t) - I' (t) I and I 11'( t) - I'(t) /2dG( t;), (i( t) 
suitable chosen, Epps & Pulley [1983]. In a wide sense t1lis is what is done in 
tins work. The gradient test, see § 3.7.3, is -(i( t) a counting measure- similar 

to testing equivalence of 

.I sin(n:l:)<p{:r)(l:J; =.1 sin(n:1:)dN{:r) 

and 

.I cos(n:r.)c)(,T)d:r =.1 cos(nx)dN(:r,) 

for a speci fied value of n. 

The question rises whether it is possible to estimate T from the data. More or 
less t1lis can be rephrased in whet1ler ornot t1le loss-criterion can he miInmized. 

Traditional maximum-likelihood metIlOds, using ~n,T' may not he feasihle: if 
T tends to infinity, the peaks of tile kernel, having a value ofT/Tt, dominate t1le 
solution (see figure 2) whereas even for bounded intervals I .h /,;ri:1: - 1 (see 
figure 3). To put it in other words: as of a certain point tile likelihood increa<;es 
monotonous Wit1l T, so T has to be contained in some hounded range. 

3 

2 T=lO 

T=l 

Figure 2: Empirical characteristic function kernels A:(T, T,:r) 
k(T ) sin(1'(r-x)) " T 1 10 

.• ,T, X = ,,(r-x) usmg T = iT, = . . 

It may be possible to estimate T using cross-validation along the lines 
of classical kemel-density estimation techniques like t1le ones descrihed in 
lHardle, 1990, par 4.3]. This technique, using eiilier maximum likelihood 
cross-validation or least-squares cross-validation, may be employed to get t1le 
optimal value of T. Depending on ilie precise met1lOd of cross-validation, iliis 
metIlOd is less sensitive to ilie peaks then ilie previous meiliod. This method 
has a disadvantage, among otIlers, in iliat it is computationally of order 1/

2 , n 
being the number of recorded accidents. Hence it is only a feasihle metIlOd for 
small n. What could have been tried is increasing tile value of T to t1le point 
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1.1 

0.9 
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0.7 

0.6 

0.5 

Figure 3: w(T,:r) = J~1f k{T-T,:r)d(r) 
Effect of limited time-interval. Assuming constfUlt intensity function 6 == L due to 
the bounded intervals, estimation on the bounds is biased. In this figure lI'( 1, LUld 

10,;1:) ~rre drawn. Clearly, hmT_"" lO(T,;1~) = L In figure 2 it is seen that at the 
smne time k(T, r, x) is getting peaked. If both <lJ - ')C <Uld T - x, J~ = 

k(T, T,;1: )4~( T)d( T) - 1. 

where some goodness-of-fit criterion is met. This line of development has heen 
omitted, partly because ofthe still-large computational effort, partly hecause of 
the restricted applicability of kemel-estimates. 

Appl ying the roughness penal ty method can also onI y he done for a small num­
ber of points. This can also be stated for all methods based on direct usage ofthe 
points. In the next subsection, a method based on a derived statistic is exposed. 
Methods based on a function of the data, essentially methods based OIl reduced 
data, intrinsically employ a kind of restricted model. This will be pointed out 
§ 3.6. 

3.5 Assessing model adequacy 

Assessing model adequacy is a key step in estimation procedures in general. 
The choice of methods is detemlined by (preliminary) assumptions. If a model 
is assumed to be a member of a particular class, fit of that model to that class 
can be tested. In general, tests based on such 'subcla.<;ses' are more powerful 
than their more general counterparts. The current ca.<;e is no exception to that 
rule. In the foIlowin,g two general tests of fit are discussed. Anotherpossihility, 
a x2-test ba.')ed on the fit of counts in intervals, is omitted due to the dependence 
on the construction of those intervals. The method could be used to test suffi­
ciency of a model within a class of models, hut may not indicate certain model 
deviances. 

Another problem is that tests have to be carried out while parameters ,u'e being 
estimated. This invalidates many standard procedures or causes considerahle 
loss of power. 
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3.5.1 Goodness-of-fit statistics based on spacings 

This method is ba.'led on the, rather natural, observation that the time elapsed 
between accidents bears relation to the model. The idea due to Moran [1951] 
a.'l explained in Cheng & Stephens [1989] is: Suppose :/:1 <. .. < :I:n is 
an ordered sample of independent stocha.'ltic variables with distribution Fe (:1; ) 
where 0 is known. Let Yi = Fe ( :1: i): 

Di( 0) = Yi - !/i-l (i=l ..... m) 

with m = 11 + 1, Yo == 0 and Ym == 1. 
'In 

1'v1(0) = - L:log(Di(O)) 
;=1 

(1 ' ) 1 1 
~Im = rrt og;( m + Euler ~f) - -:j - -I') -r- ... 

~ ~rn 

Z 1 Z It 1 
(T7lI = m( r - 1) - -:j - -t' - + ... 

\) ~ HT{ 

It is further noted that M(e) is asymptotically distributed as Nhm. (T;', j, al­
though convergence is stated as being slow. Cheng & Stephens [1989] give a 
small-sample XZ-approximation. 

The authors also give statistics in the case when k parameters are estimated. 
1'v[(O) is based on Fe' The authors define: 

(' (1 )1 
-1 = 7m - -:tn 2(Tm 

Then Cheng & Stephens [1989] argue 

A A 1 
T(O) = (}v1(e) + 2k - CJ)/Cz 

is approximately x~-distributed. 0 should be an efficient estimate of e. 

Adaptation to the case where parameters are being estimated is simple and 
straightforward, as the authors state. This is a major advantage of this method. 
However, perfonnance in tenns of power is somewhere between little and less. 
Simulations showed that its perfonnance was too mediocre to be useful in prac­
tical cases. 

3.5.2 Derived Kolmogorov-Smimov statistics 

Kolmogorov-Smimov statistics are often used in practice. The tests are based 
on comparing the empirical distribution F" (x) to the hypothetical distribution 
F(;z; ): 

Dn = sup IF{x) - F,1(:r)1 O. IS) 
-0C<X<OO 
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In the current setting, the fit of e(:1:) to e(;z;) is to be tested. Given n i111d nOI1-
stochastic <lJ, the points Tl, ... , Tn are independently distributed with density: 

fit) = T <)(t) 
Jo 1)( 8 )ds 

T being the end point of observation, as was denoted by 1 up to now. 

In the standard case, when P is completely specified, confidence limits of D" 
are widely available. In the composite case, when parmneters are estimated 
most effort seems be directed to the case where location i111d scale parameters 
have been estimated. Most authors denote tl1e general case to be difficult and 
out of the scope of their work. IKendall & Stuan, 1987, chapter 301 state that 
tests are no longer distribution free, but parmneter free in the location-scale 
case. Most authors refer to Durbin [1973 J. It seems there is no recent reference 
about the subject. Even Agostino & Stephens [1986] only offer results in the 
direction of so called half-smnple techniques, for instance Braul1 [1980] with a 
method supposedly only valuable in the large smnple case. Durbin 11973 J of­
fers guidelines for the development of tests, but also mentions a suggestion ~y 
Rao [1972], which adapts equation 3.15 in first order approximation about (): 

}~,(:z;) - P(:z:) =F,,(:z:) - P(:z;,O) + (P(x,()) - P(:rJj)) 

) _ P(:D,8) + (() _ e) [)P(:z~JJ) 
()() 16) 

The key step is the estimation of (e - 8). Rao [1972] suggested the use of a 
random sub-smnple of the data points containing n' points, about half the sam­
ple. From the reference in Durbin [1973] it seems Rao [19721 suggested the 
llse of the first n' points, or they were used for simplicity as is done here. Of 
course, the points are rmldomly selected in practice. In the current application 
each point is selected ornot selected based on a (semi)rmHlom experiment. This 
yields a selection of about half the smnple. In Rao [1972] probably a selection 
of exactly half the smnple is used, when possible. The estimate ofRao [1972J: 
(I is Fisher infonnation of one point) 

It could be suggested to use ,~, instead of ~ to yield: 

R (") - F (,,) _ P( 'eA) _.1.;f. ologf.(:Cj,i}YI_l ()P(;z;,i}) 
'n:Z' - n .1, :1., + L-- A • A 

11,' j=l ()() ()() (3.17) 

Using sup I Rn I instead of Dn in equation 3.15 completes the method. The 
method has to be adapted to the current situation, considering: 

ri' (. B) _ J;~b(s,())d8 
1.'71 :1., -'T. 

lo <p(B, B)d.'i 
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This me;UlS: 

iJ F ( x, e) foT 4~d.sJ~ fe <bds - II fe rpds f; (/)(1.<; 

O(} (JoT <:,&(8) :2 

= a{T)b(l;) - a{T):2b(T)a(;z;)-l (3.18) 

with: 

and the vector 

b(t) = (lot :(}40ds) 
\ogf(:r,(}) = log <1)(:r" (}) -log loT (/)(18 

;.J DarT o( O)d 
U I . ( ) _ U (..) aB.fo (f T, l' 
'j (} 0 g f :r, (} - O(} log (I~ J.., (} - -=-;T",;------
C fo 1)( l;, (}) dx 

= :0 log <b(x, 0) - a(T)b(T) 

defining: 

then, summing: 

Rn(l;) = Fn(x) - F(J.;,iJ) + 
c'r-1 (a(T)b(;z;) - a(T):2b(T)a(:r ) 

(3.19) 

Durbin [1973] acknowledges the claim due to Rao [1972] that tests hased on 
Rn(:r:) behave asymptotically like tests based on F(;r:, 0) when F(l:, 0) is com­
pletely specified. Clearly, under Ho if 11 tends to infinity, c tends to zero, when 
maximum likelihood is used or any method ohtaining an a,l,ymptotically equi­
valent solution. This holds for Fn (:z;) - F( :1;, iJ) as well. 

A major disadvantage of this method is the random character of c. This results 
in the phenomenon that the tests are not replicable. It~ is clear that this method 
can be improved by a less arbitrary estimate of 0 - O. Otherwise, the method 
turns out to be effective and it is employed further. 

[Pollard, 1984, Examples 15 and 23] addresses the matter in rigorous manner 
(exmnple 23) and a less ligorous way in exmnple 15, which may be employed 
to gain a better approximation. 
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3.6 Series approximation of functions 

3.6.i introduction 

In practice not very much will be known about the shape of the intensity func­
tion. TillS means a candidate function has to be chosen from a large class (or 
sieve). At this point there is no obvious choice as to what class of models is 
suitable. Considering tIlls fact, it seems a good idea to choose a class of mod­
els that is relatively ea...;;y to use. 

The first consideration is about restricting the potential intensity function to be 
larger th,m zero at all times or not. This ha...;; many consequences, as will be­
come clear later. At first sight, it seems essential to restrict the intensity func­
tion to be non-negative. Although post-estimation possibilities may exist, at 
tillS point it is opted to constrain the panuneters while estimating in order to 
yield a non-negative intensity function. This cml be done, for instance, by ac­
tually estimating </) = ;;2 in tlIe non-negative case or 0'> = exp( - in the strict 
positive ca...;;e. The latter is pursued here. An advmltage of using a quadratic or 
exponential form is in avoiding serious numerical problems of nonlinear esti­
mation wlder nonlinear inequality constraints. Both Fletcher [ 1981 J mId Luen­
berger [1984J, and probably many more, advise to avoid such constraints when 
possible. Given the assumption tlIat 01:> cmI be written as exp(lJ!) for somell', a 
system must be set up to approximate 1}) and tllOugh this <;'). A number of choices 
are available, mnong them: 
- 'short wave' systems: systems consisting offunctions tllat are essentially lo­
cally defined. Those functions fade out when moving away from their center. 
Exmnples are kernel methods and so-called 'wavelets'. 
- 'long wave' systems: polynomial approximation, fourier approximations 
and the like. 
The 'long wave' systems seem to have the advmltage of allowing some kind of 
extension beyond tlle observed period, commonly called prediction. Because 
tillS application might be useful, a combination of 'long wave' systems ha..., 
been chosen. 

W11en applying a series approximation using terms !k (:1:) it is a...;;sumed that any 
continuous function cml be written as the infinite linear comhination of tenns 
!k(:c ). 

~)(t) = L ek!k(t) 
k=o 

To be practical, all tenns fk(:1;) should be almost everywhere continuous mId 
it turns out to be virtually necessary that all terms are bounded on a compact 
set, say between -1 and 1 for reasons shown below. Other practical properties 
include f being both differentiable and integrable. 

The idea [Press, Flarmery, Teukalsky & Vetterling, 1989, p.168] is tl1at, given 
the fact tllat tlle coefficients decrease after some index N, 'die out', the de­
vimlce is dominated by leJJd:z;) 1 :; le,.:!. This idea cml be found in various 
other sources as well. 
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Assumming the intensity function is positive it C,ill be written as: 

t) = exp ('~E,rhfdt)) 
k=o 

Or as approximation using N terms: 

(
N ) t) = exp E fhfdt) (3.20) 

which should be sufficient, bias is neglected against variance. From now on it 
is assumed that the intensity flmction can be defined well by equation 3.20. 

It is worthwhile noting that the use of hybrid systems, e.g. combinations of 
faurier and polynomial systems may have practical advantages. It turned out 
to be useful that the estimated model has stationary (Fourier) components and 
a non-stationary (polynomial) component. TIus fact slightly complicates mat­
ter in tile following part. 

3 .6.2 LORlikelihoo(~function of a series approximation of functions 

This subsection is concerned with the maximum likelihood estimation of func­
tions constructed as above. The loglikeIihood is in tllis case: 

m N 1 

£(ll, ... ,Tm)=I:>L:0rfr(ld-l (/)N(t)dt 
,=1,.=0 0 

N m 1 

=:L 0,.:L fr (li)-l <t0N(t)dt 
1'=0 ;=1 0 

Using: 

m 

Cr = :L i1'( li) 
i=l 

this results in: 

N 1 

£(ll, ... ,lm)=:L0rCr-l c/)tv·(t)elt 
,.=0 

(3.21 ) 

It is clear that it is advantageous to have the i1' bounded, so large sums er of 
terms iT ( li) can be reIiabl y computed fTom the data. Imagine having to sum a 
lot of terms t100 in the range of 0 < t < 7r. 

Because the tenns are bounded and continuously differentiable with respect to 
Ok, integrals of ~hN(t) are differentiable under the integral. This means that the 
IogIikeIihood (equation 3.21) is differentiable with respect to Ok. Its derivative 
with respect to Ok is therefore: 

iJ£(ll"" ,Im) -, 11 () _ () 
- ')0 =(k - h t (PN t elt 

( k 0 
(3.22) 

Finally, second order derivatives: 

~)') "( - 1 u~ L 11,··· , I nt ) f () ( ( ) 
iJ01/H},. = -.10 h t f,- t )(;)N t elt (3.23) 
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Because EC,. = E J~ fr(t)dN(t) and can be estimated by ~;~1 (rz), it 
follows from theorem 2.4 that the expected value of the gradient is zero If Ho 
is true. This result can be used in assessing the relevance of not-used tenns, 
where tileorem 2.4 also offers an estimate of its variimce. 

It has already been noted tilat in tile rest of tillS work, the set functions consists 
of the goniometric functions and one trend factor: 

f-1(t) = t 

fo(t) = 1 

fdt) = {Sin (~: "tIt) 
cos eft) 

kodd. 

k even 
0.24) 

As is obvious, apart from k = -1, fk is bounded on K At this point it seems 
useful to indicate a possible confusion. From this point on the meaning of fd t) 
may be ambiguous. When appropriate, it is defined by equation 3.24 ,md else­
where it means actually sometiling like fil; (t ),i" the index in tile sense of equa­
tion 3.24. It is hoped that tins may not result in too much confusion. 

In the following subsections a.<;ymptotic results are studied, in tilese ca.<;es it is 
assumed timt tile re is no trend while tilis would mean that either t) - 0 or 
<p(t) --+ cc, which is not considered realistic and for winch cases asymptotic 
results are difficult to obtain, if useful at all. The choice of the or hetter, 
the assumption that tile true intensity function can be approximated well hy 
tile set functions defined tilat way, implies some form of stationarity of the true 
intensity function. This leads to some derived assumptions, using t - x: 

E [J~ 8)dS] -c <x (3.25) 
t 

E [Ir; fi</~(;; )dS] 
- Ci < r;c (3.26) 

E [I~ fdit(S)dS] --+ hij <cc (3.27) 

and equivalents to c( B), Ci( B) and hij (B). These assumptiol1') will be matched 
Witil point process equivalences, again, using t -;- IX, at least in probability: 

Ir;dN(8) p _ 
~----'--'- --. C IX 

t 
J~fidN(s) p _ -'-"---- _. e-

t t 
<00 

f~ fJjdN{.5) ~ It .. 
t . 'J I < IX 

When possible, a stronger fonn of convergence can be assumed, but this is de­
pendent on the specific properties of the point process. 

Many authors reduce tile parameter space to a compact set, which is quite re­
alistic to do and done here too. The advantages are clear, simplifying many 
proof,>. In this ca.'>e this practice C,Ul be extended to assuming: 

hi:::; c:::; Iv! < x (3.28) 

26 



Ai c,m he taken quite large, say more than the numher of accidents that would 
happen if every inhabitant of the world has a million accidents a day. It is rea­
sonahle to assume that serious action would be taken if this number is only 
remotely approached. However, from a theoretical point of view it is hetter not 
to make many assumptions. 

3 .6,3 Uniqueness of the solution 

An important question is when the maximum likelihood solution is unique. A 
heuristic starting point can he found in equation 3.10, from where it can he ar­
gued that, assunling asymptotically ISE - 0, 6 and </>0 must he equal ds­
almost everywhere. This fact combined with a one-to-one relation between B 
and (j)( e, t), it is likely that, at least in the end, only one e is the solution. At 
this point a finite case is dealt with. It is pursued to prove that for every t there 
exists only one et as the maximizer of the likelihood function. 

A first note is that the loglikelihood function is continuous in hoth (' and B. 
If C' is slightly changed, a new e can be found close to the previous one. Tins 
implies that if there exists a one-to-one mapping from (' to fJ, this mapping is 
continuous. 

What is shown next is that the Hessian in equation 3.23 is strictly negative def­
inite under certain circumstances. To do this, a combination of matrix algebra 
and integral convergence theory is used. The crux is that 

-Hij = (la1 

h(t)fi(t)q~N(t)dt)ij 
can be approxim ated arbitrarily well by H (e, n ) ij = - (I ( fJ, n) ) ij in: 

( ) Jl'v)(fJ,8)rls~ ( ( ) ( ()) I fJ,71 = L.J h :Z:k e) fi :1:)" e 
n /';=1 

using a not equally spaced grid, depending on the distrihution <P. :Ci( e) is de­
fined in that manner hy: 

TI1is is an adaptation of standard results otherwise found in numerical integra­
tion theory. It relies on the assumption that 0 < ~&( e, t) < rx: for all e (in the 
compact set). 

On the other hand the matrix H (e, n) can be written as 

H(e, n) = -X(fJ, n)'X(O, n), 

X (e, n) heing the matrix with rows (h (:1:i( fJ)), ... , fN( :Ci (e))). Clearly, if the 
column vectors are independent, H ( e, n) will be strictI y negative definite. 

The fact that the colun1Ils in X (0, n) must be independent for all e a<; of some 
n no > 0, c,m be translated in the notion that no function !k c,m he written 
as a linear combination ofthe other functions in all points on the interval [0, T], 
which would mean that the columns are independent 011 all :Ci( B). While e is 
assumed in a compact set, the point ahove can he easily proven. 
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3.().4 Consistencv 

Another ohservation is that the limiting Hessian, as defined in equation 3.27, 
is strictIy negative definite too. This is not true in tile general case, hut it holds 
hy the fact tIlat the !k are purely periodic. 

Clearly, the empirical Hessian if = - Lf~l fT ( Ti) f~ (Ti) may not he detinite 
negative in all, small sample, ca<;es. 

The previous suhsection yielded the continuous relation hetween tile vectors ( . 
and e hy means of the solution of the maximwn likelihood prohlem. 

In tlns suhsection consistency of tlle estimators is studied. It has already heen 
shown that for every T tllere is only one maximizing value e. If the anlOunt of 
information sequentially increases, the question rises whether there is a limit 
of the sequence of subsequent estimates of e, and how it is approached. The 
key problem is of course the existence prohlem. 

Basically two ways of increasing information are available, one replicating the 
process, anotller by increasing the timeframe of observation. Only the last op­
tion is practical, but tlle first option is of theoretical interest. BOtll options es­
sentially result in increasing the number of observed points. 

It is obvious that an impOltant role is played by the point process integrals (', 
as tlley determine 0 through the likelihood problem. It must he assumed, tIns 
cannot he proved hy itself, that eT converges in some sense to a function of T 
or n. This feature implies some sort of stationarity of tile process 1"ft, In the case 
of replication, this is obvious, but in the case T - "X) this requires additional 
assumptions. Prohably tIle only key assumption is that l\ll < "X) if t x" hut 

N(t) -,. ex; (3.29) 

Instead of equation 3.21, a scaled version of the loglikelihood function is used: 

Assume, at least in probability (compare equation 3.6.2): 

I < ex; Vk E (0,. . . ,11.') 
(3.30) 

Tllis means that, given le!,; I < ex; for all 0 < 1'1'1 < rXl and (J ~ 1 there is 
at' > 0 such that for all t > tl for all k: 

(3.31 ) 

Apart from assumptions on the existence of the limit C, [Serfling, 1980, The­
orem on page 24], estahlishes that if f is continuous with Pe-prohahility one, 
tllen f( Cd ~ f( C) accordingly. Tins theorem cannot be used directly. 

Recall that Bt = g ( t, c( t ) ). Convergence of g ( t. 11 ) for t -. x, is studied first. 
As is seen ahove, with any prohability p, Iy - cl ::; A1 < 00 C,ll be a.'>sumed, 



thus y in some compact set. This allows to prove only pointwise convergence 
of g( t, y) - g(y) -'> 0 which can be extended to unifornl convergence on the 
set {y : Iy - cl :s; .M}. 

Pointwise convergence follows from tlle fact tllat the limiting Hessian eXists 
and that its eigenvalues are bounded away from zero see § 3.6.3. 

Thus, given 1'vl and 8 small there exists a /' > 0 such tllat for all ~ > 0 and 
{y: Iy - ci :s; At} 19(t1 , y) - g(t2' v)1 < E f}, t2 f' and tlms 

P(lg(tl.Y) - g(t2,y)1 d ~ 1 - h 

which means 

TIllS implies, using (i' < t < k): 

Ig(t,c(t)) - g{k,r(k))1 :S;Jg(t,c(k)) - g(t',c(l:))l+ 

!g(t,c(t)) - g(t',dt))i + 
\. ./ 

11, 

Jg(t',c(t)) - g(t',c(kJ)l 

As seen above, both :Ck and Vt converge in pmbability to O. By [Serfling, 1980, 
Theorem on page 24] Ztk converges in probability to O. This proves 

g(t,c(t)) - g(k,c(k)) ~ 0 

3.6.5 Asymptotic normality 

In this section, ;:ill attempt is made to estimate the error distribution about B, 
assuming the model is correctly specified. Treatment in the case ofmisspecifi­
cation C;:U1 be found in White [1982] . 

• " P, (, , , " l' I: (i>(O,s)ds _ As seen above, Bt -B -, ), t -7 CXJ. It was assumed that Imt~rx) t -

p( B), togeth?r witll N (t) It ~ c, t --'- CXJ. It was found in § 3.6.3 that (' and B 
are related, B is defined as the maximizing value of the log likelihood function. 
TIllS means: 

a 
i:JO£(Tl,'" ,Tm)IO=B = 0 

This results in: 

VI,; 

Because (} is estimated consistently, q~ may well be expanded about its true 
value: 
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3.7 Algorithm 

3.7.1 Overview 

hecause 

it follows 

sIds (3.32) 

Define, noting a different notation of H: 
- D the vector of (C\ - J~ it (i&(s )ds, ... , Cl{ - h\(i)(.~ )ds V 
- Hij = (J~ fdAI(8)d8)ij, 
this results in: 

Thus 

E((B - O)(B - Of) = H-1 E(DDT )If-l 

E( D DT) can be computed through theorem 2.4. It turns out that J) J)T 

If, as defined above. 

E((B - e)(B - O)T) = If- 1 (3.34) 

After this result, define iI = If It and resume from equation 3.33. Usually. 
asymptotic normality is achieved by something similar to 

s(t)(Bt - 0) = (tHt1)(s( )D t 

It is then argued that by: 

(tIf t-
1) ~ ft-I 

,md 

t )jt)Dt ~ D ~ lV(O, (7"2) 

tJ1at, by Slutski's theorem: 

s{t)( Bt - 0) ~ ft-I D 

(3.35) 

(3.37) 

It is clear that equation ::U5 follows from equation 3.27. Equation 3.36 is not 
trivial. Under current assumptions, the martingale D t converges to a (multi­
variate) nonnal distributed vector when suitably scaled by tlle martingale cen­
tral limit theorem. 

In the previous section, the process of estimating a model is exposed. In this 
section. an algoritlnn is discussed tllat uses such estimates to select another. 
hopefully, hetter model, hoping that eventually the optimal model is found. 
This optimal model is supposed to be a member of a certain cl<l'ls, of which 
members can be selected. 

Altll0Ugh in this particular case some sort of fourier system is used, tlle coeffi­
cients of the individual terms cmmot be estimated independently. This means 
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that a model selection scheme needs to be designed to cope with dependencies. 

0.00 

Figure 4: Integrals of type J fiexp(h )dt. 
For a number of indices the integrals are computed and plotted. Functions I; (t) are 
defined as, if i is odd: f;(t} = sin(t(i -1}/2), otherwise I;(t) = cos(tij'2). 

In figure 4 computed values of integrals of J fi exp (fj ) dt are graphed. TillS is 
one of tlle simplest cases where it can be seen tl1at tl1e terms are not indepen­
dent. It can easily be seen tl1at simple eXanlination oftl1e point process integrals 
L, fT (rd do not offer clear information on relevance of tlle components. It is 
clear that estimates of the components will be dependent, as could also be seen 
from equation 3.23. 

The algorithm basically uses tlrree steps: 
1 Testing for convergence of the algorithm, not tl1e estimation procedure. 
2 Selecting terms to be deleted from the model. 
3 Selecting candidate terms to be included in tlle next estimation procedure. 
Otl1er duties of tl1e algorithm include checking if a certain model has already 
been used. 

Tile procedure is completed when eitller of tlle next conditions is met: 

The first condition is convergence, achieved when tl1e goodness of fit criterion 
is met, see § 3.5.2. Usually tl1is point completes the procedure, altllOugh some­
times tl1e model can be simplified a little while satisfying goodness of fit. In 
tllat case tenns in tl1e model are tested for relevance by a metl10d described in 
§ 3.7.2. 

Alternatively, tl1e procedure cannot improve the solution anymore. TillS hap­
pens when no suitable terms are left to include. This can be the case because (a) 
no terms are left at all or (b) all remaining terms are tested insignificant. Two 
tests for tl1is purpose are described in § 3.7.3 and § 3.7.4. 

After a model has been estimated, all terms are sorted by increasing relevance 
witl1 respect to tl1at model. The terms in tl1e model are sorted according to 
§ 3.7.2, tlle terms not in tl1e model are sorted according to § 3.7.3 or § 3.7.4. 
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If I1le algoril1lln indicates 111at it has not converged, tl1at is the algorithm indi­
cates that tile la..<;t estimated model does not satisfy convergence conditions, it 
first checks whether it can remove any terms. This is done, starting with the 
least relevant term, until all left over tenns test significant. Then (111ose) temlS 
are added (again) until a model is created that has not yet been estimated. If this 
means that no terms have been deleted at all, the model adds new tenns until 
eitller a model is created tl1at has not yet been estimated or all terms tested ir­
relevant. Iftl1e algoritl1m could not remove any term in the first place, so to say, 
its guess was completely successful, it can add one or more terms if instructed 
to do so by a selection scheme described in § 3.7.5. 

3.7.2 TestsfOl' parameters in model 

3.7.3 Gradient test 

Suppose one is interested in tl1e relevance of a parmneter Eh in a model. Iden­
tify I1le model by its parmneter vector B and the model, not 1!sing Ok hy e. The 
releyance of (h cml be seen compaIing the model based on 0 to a model based 
on O. 

Two approaches are commonly used to address tillS problem: 
(l)Estimate jj by some memlS mld evaluate the likelihood of 0. Compare 111is 
value Witll tile original, usually by means of a likelih~)od ratio test. 
(2)Study tl1e surface oftl1e likelihood function about 0 <md see ifit is likely that 
tile likelihood is reduced significantly when tl1e parameter is removed. 
MetIl0d (1) c~m be carried out by effectively re-estimating the model, or ap­
proximating O. The latter option tumed out too unreliable. 

Obviously, metl10d (1) is most reliable but can be very costly to implement 
in practice. The altemative (2) is implemented l11f(mgh tile Wald-test (Wald 
[1943]). Its main attraction is that it is not necessary to estimate the altemative 
model. 

In fact in tillS problem, only a simple version of tl1e test is necessary. Only tl1e 
test Ok = 0 is perfonned. Generally, defIne a( 0) the constraint, define A 
(aa( 0) / (JOl, ... , aa( 0) / ()OK) then: 

Hr = -a(B)'(AH- 1 £11);1a(0) 

This, in practice mnounts to: 

A2 

W=~ 
H-1 
. kk 

(3.38) 

It is widely known tI1at W is asymptotically XI distributed if Ho is true. 

The tecl1l1iques employed in tlllS subsection are closely related to the tech­
Illques in § 3.6.5. TillS test procedure is aimed at testing relevance of parmn­
eters not used in the model. In tIlat sense it is similar to so-called LagranRe­
multiplier tests. It should predict tile effect of adding a particular teml to the 
model. The test exposed and used here is designed to add only one tenn at a 
time to the model. Lagrange-multiplier tests can test the effects of adding mul­
tiple terms to tl1e model. 
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Suppose the model already contains n terms. These tenns each have a certain 
index i,i' the precise value thereof is not important here. The tenn k to be tested 
for inclusion ha.." some real index iJ" but that value is also not relev,mt in this 
section. Thus for brevity: ej == eZj and fj == 

Under Ho it is a..<;sumed tIlat the model is correctly specified. This means tl1at 
Ho states that Ok = O. Moreover it is assumed that (j is close to the true value 
of e. These assumptions should justify the use of tl1e expansions below. 

It is assumed that the true intensity function can be written like equation 3.20 

,<; E [0, T] 

The density function <;6(8) will be estimated by .5) using the estimate (j of e. 
The log likelihood function is (see equation 3.21): 

£(0) = e'c - .I (j)(s)d.s 

in which (,' denotes the vector of point process integrals. 

The maximum likelihood estimator e is commonly defined as the value of e tl1at 
maximizes £( 0). The mechanism of the test (.md of the Lagnmge-multiplier 
tests) is based on the idea tl1at the loglikelihood can be improved when it ha..<; 
a non-zero derivative with respect to some parameter. Of course, the deriva­
tives with respect to the parameter already in the model are all zero. Thus the 
derivatives with respect to all non-used terms are evaluated and judged, recall 
equation 3.22: 

( a~J:)) A = Ck - .I h(8)~(8)d8 
iI=() 

,md equation 3.32: 

Then, using equation 3.33 and defining 

Vk = H- 1
( t .hhq~(8)d.s, ... , ft hfnc/)(s)d.s)'. 
~ ~ 

we get: 

= (\ - 1t hq)(s )ds - 'lJ£D 

The vectors D and VI; and ilie matrix H could be extended by one dimension 
unit to accommodate k, or the term k represents, to get: 

WI.; = (- 71dI 1), 

and 

AI; = E [RI;Rr] 

This results in: 

HI.; = 'WkRI.; (3.39) 
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Under Ho, ,ch will be approximately normal distributed with mean (J and vari­
ance W~ilk'Wk. The expression W~i'hWk can be simplified further. 

The alternative is the Lagnmge-multiplier test. This test needs a (possihly 
large) matrix inversion for every tested parameter. It then mnounts to. usmg 
1'k = (\ f~ !k<;;!,q 

L ~'1 - 1,2 ( 11-.1 ) 
J, k - k." k n+1,n+1 

Although the Lagrange-multiplier test may be a useful test. it is not used he­
cause it also needs computation of the integral and it needs a sometimes time­
consuming matrix inversion. Another disadvantage is, albeit only to some ex­
tent, that the method is incompatible with the method in 3.7.4. Some compu­
tational relief can be found by applying the Sherman-Morrison fonnula [Press, 
Flmmery, Teukalsky & Vetterling, 1989, p.75]. This fonnula can be used to in­
vert a matrix when the inverse of a similar matrix is known. This similar matrix 
being the covariance matrix of the parmneters in the model. 

3.7.4 Approximate Rradient test 

The derivation of the approximate test needs a little explmmtion. The mam 
reason for using an approximate test instead of a less approximate test as in 
§ 3.7.3 will be determined by computational considerations. The reason for de­
veloping this test is the sometimes herculean effort needed to compute a (very) 
large number of strongly periodical numerical integrals. Tllis can be very time­
consuming. Tllis case arises when a large number of accidents is m1a1ysed over 
a number of years that have a strong daily pattern. Although this kind of proh­
lem may not occur very often, some preparations can he made in advance. 

A few options are available to lighten the computational burden. First and fore­
most, restricting the number of times all integrals have to be computed. This 
is done to some extent by a step described in § 3.7.5, where a (heuristic) strat­
egy is exposed that 'makes larger steps' in the selection scheme. Of course it 
is hoped that those steps don't include too much terms that have to be rejected 
at second sight, which can be a major drawback. 

Another option is to reduce the numher of integrals that have to he evalu­
ated. This method is based on partial integration mId exploiting properties 
of trigonometric functions. The trick is to exp~md a function in two differ­
ent functions in ml practical way. For instance, :I;) = ) + h ) then 
f f(:1; )d:l: = f g(:z: )dx+ f h(:z:)d:r:. Doing this in a clever mmmer, having com­
puted I g(:z: )dx already means hy computing I f(;); )d:r we get I ) (h(for 
free). More details follow. 

It is assumed that the functions fi,i ?::: 0 obey the following rules: 
- fa is constant. 
- fi( "') is continuous and differentiable with respect to 8 on [0, T]. 
- ThesetoffunctionsT = {fili = 1.2" .. }U{!o} is closed under products, 
that is, fih can be written as a linear combination of elements of 
- with respect to 8, T is closed under both differentiation mId integration. Con­
sequently, fi is infinitely differentiable m1d integrahle on [<L T]. 
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The set of functions used here obeys these rules. Recall: 

n 

= LOdf(t)cfJ(t) 
i=1 

For k > 0, if the right model is specified: 

L
t n Lt 
hr/His = [J'iA)]h - L Oi FdI1)ds (3.40) 

o i=1 0 

This relation is to be exploited in this subsection. Alternatively, the relation 
holds for the estimated case. It doesn't rely on the model being correctly spec­
ified. 

(3.41) 

It is noted that the latter kind of integrals: I~ Fkff:i>ds can be expanded into two 

integrals of type a J: k. :i>ds and 13 J~ fil,:i>ds. The main object of the test is to 

find out whether or not J hdl\l ::::::: I fk:i>ds. Under llD, the model is correctly 

specified, this is the case. The idea is to simply put J *dl".f in place of I *:i>ds 
in equation 3.41 and test equivalence of: 

0.42) 

as ei and I~ Fdf dN (.5) are not independent, a test based on this is hiased. 
Equation 3.42 and equation 3.41 are not even asymptotically equivalent. It is 
assumed that the bias is negligible with respect to the variance. Moreover, this 
test may not be used to test parameters in the final stages. It may serve as an 
intermediate to speed things up. 

With respect to equation 3.41, it can be seen that I~ h~d8 can be expressed 
as a combination of other integrals. It seems attractive to select the most com­
plex integral on the right side of equation 3.41 and solve for tillS equation by 
computing the others. This scheme enables tile (recursive) computation of all 
integrals from some starting point. TillS starting point is at most right above the 
most complex term used in tile model. A few notes however: ~ 

- Fortunately, tIlis is a numerical scheme so stochastic properties of 0 are of 
no influence. 
- Unfortunately, tile method relies strongly on tile precision at which tile inte­
grals are computed. 
- The method only works for tile terms WitIl complexity larger tIlan tile max­
imum complexity in the (estimated) model. This means that if the ma.,ximum 
number of terms is estimated well in advance, tIlis number will not he much 
higher then tile maximum complexity in the model. This in tum means tlmt 
the advantage is only based on not having to compute integrals for a relatively 
small number of temlS. 
- If tile parameter On of tile most complex term in tI1e model is rather small, 
this also adds to the numerical instability of the procedure. 
The above sketched notes help to establish the conclusion that the recursive 
metIlod may not be reliable in general and it is skipped therefore. Computa­
tional advrultages are doubtful too. 
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On the other hand, a test based on equation 3.42 appears to be useful. The test 
is not used without the backing of § 3.7.3. 'Critical' terms are tested hy § 3.7.3. 
The test statistic is defIned as: 

(3.43) 

It is assumed that the distribution of ,S'k has a mean value of approximately nil. 
It is also assumed that I'~kl/ (i-2( /ik ) reflects the orderofthe likelihood under lIn 
of the individual tenns being nil. (i-2('~k) can be computed assuming a multidi­
mensional nonnal distribution. In order to compute the covariances involving 
fj equation 3.34 is used to express temlS of Bi in tenns of simple point process 
integrals. The tenns J~ FkfidN(,s) are also expanded into simple point pro­
cess integrals. Then theorem 2.4 is used to compute the variance. It tums out 
that second order tenns can be neglected: 

a 2( x:/j) = Jt;a2 (y) + !L~a2(;r,) + '2ILx/lyCov(:r, y) 

* cov 2
( ;r" y) + cov( x,;r, )cov( y, y 

~ /l;a2( y) i- J1,~a2(:1;) + '2/lxILyerYV( ;r" y! 

The above derived method won't work for fo and f -1. Integrals for these func­
tions will have to be computed in the classical maJUler. 

3.7.5 Selecting more terms at a time 

The algorithm defined so far is based on the idea that only one new tenn at a 
time is included in the model. Then while systematically checking the useful­
ness of temlS already in the model, tenns are added as long as that seems neces­
sary, until convergence is met. When a complex system is to be estimated, this 
means that quite a few steps must be made, each needing a full gradient test and 
a full goodness-of-fit test. It seems useful to add a few controlled leaps to this 
process, in order to speed things up. This subsection describes a way of doing 
tillS. 

TIllS metllod is based on tile idea tllat tile Hessi,m of tile loglikelihood should 
not have too different eigenvalues. In more practicallaJlguage tillS meaJ1S there 
should be little dependence between tile tenns in the model. The implementa­
tion is again based on tile idea that I fdjJds ~ I /ifidN (8) when tile model 
is correctly specified. 

The metllOd is used after tJle parameters have been selected by a combination 
of eitller S 3.7.3 or S 3.7.4. TIllS defines a queue of terms of which step by step 
a tenn is added until one of the following events occur: 
- No tenns are available or tile maximum number of telms to be added is over­
drawn. TillS paraJneter should be user supplied. 
- The next tenn did not test SigIllficaJlt in the sense of § 3.7.3. The terms that 
could possibly be included in the model are always tested by § 3.7.3. These 
terms are among tile 'critical' tenns mentioned in § 3.7.4. 
This step supplies an ordered raJlge of tenns from which tenns can he selected. 
Wlllle waiting for the above mentioned event to occur, tile procedure computes 
a relative effect of adding up to a particular tenn to the model. This effect is the 
condition of tile Hessian, which is the quotient of tile largest aJId tile smallest 
eigenvalues of tile Hessian. This value could be computed by computing (part 
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of) the eigenvalue spectrum. This method can be costly in some cases. As the 
method is not needed to work perfectly, the condition is estimated by estimat­
ing the largest and the smallest eigenvalue of the empirical Hessian using the 
theorem of Gershgorin, [Stoer & Bulirsch, 1980, p. 385]: The union of all disks 

It, = {it E C 11/1,- (Liil::S; LI } 
kf:.' 

contains all eigenvalues of the n x n matrix A = [aiiJ. Thus the m(Lximum and 
minimum in R. ofthis set are used. 

While adding at least one tenn, it is hoped that the number of tenns just before 
the greatest jump is a good candidate to use in the next algorithmic step. 
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4. Extensions 

As it is defined so far, the model may not be very useful in practice. Some ex­
tension .. '> have to be made in order to get some information from an analysis. 
Uses of data analysis generally are in one oftwo categories: 
(l)Retrospective analysis. Roughly, fInding out what happened after it hap­
pened 
(2)Prospective analysis. Roughly, what is likely to happen in the future. 
Both types, but mainly (2), are deeply buried in assumptions. Case (l) could be 
divided into a pure phenomenalistic part and an exploratory part. The fIrst is to 
fInd out what the intensity was at a certain timepoint, no matter what caused it 
to be that way. 

More often one will tly to explain the nature of the process using exogenous 
variables. See § 4.1 for some remarks on the use of exogenous vmiables. 

Probably the most interesting application is prediction. Prediction is not meant 
in the sense of predicting the times accidents occur. The main interest will be 
the expected number of accidents in a time period. Another may be the conclu­
sion that the number of accidents of a certain kind seems to rise or not. 

The prediction above is meant in a literal sense. Another application ofpredic­
tion schemes is 'prediction of the past'. This is explained in conjunction with 
intervention analysis in § 4.3. Prediction in general is a subject in § 4.2 

4.1 Exogenous variables 

The inclusion of exogenous variables seems a quite straightfOIward job. It is 
best to note that exogenous variables could be regarded as simple functions :r t 
ofthe time. Only a few remarks have to be made. As a consequence of § 3.3.3, 
it seems highly advisable to assume the functions induced by exogenous vari­
ables to be continuous in t. This would keep <p continuous. In most cases this 
may not be an unreasonable assumption anyway. Its main advantage will be 
less sensitivity to local aberrations, both in the choice of the change points of 
the extemal function and in the accident points around the same point. This is 
not a compelling advise though. 

Relev,mce of exogenous variables that are not included in the model can be 
tested through § 3.7.3 but in general not through § 3.7.4. Relevance of exoge­
nous vmiables that are in the model cm1 be tested through the Wald-test, see 
§ 3.7.2. No exogenous vaIiables have been used here. It may be useful to give 
(some) exogenous variables a special role in the model selection process. In 
that case they should be exempt from removal of tl1e model. If one is interested 
in a comparison of solutions with aI1d witl10ut certain exogenous variables, it 
seems attractive to have control over their inclusion in the model. 

Anotller (small) advantage oftl1e continuity ofthe functions defIned by the ex­
ogenous variables is tlmt tlleir integrals witll respect to (/1 are more easily com­
puted. 
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Suppose x( t) has points of discontinuity in :1:1' .. "' .I:,., then: 

.I 8 8)ds 

= t (rx' 1;( S )1'( 8)(L~ + 1)( ;/:;) (lim :/:(.'i) - lim:I:{,<;))) . ix, six, slx, t==l 1-. . 

This of course is not a serious problem, but it can complicate things. 

A completely different point of view on exogenous variables is to compare the 
estimated intensity function to some exogenous variables. This case seems a 
little out of scope here, so it is omitted. A particular application of exogenous 
variables is highlighted in section § 4.3. 

4.2 Some derived statistics 

A number of statistics can be derived from a solution of the model. The main 
statistic will be the solution vector and its covariance matrix, as the solution 
vector is assumed to be nonnally distributed. Most statistics, ifnot all, will be 
derived from these. 

4.2.1 The infe!1sitv at time t 

An obvious choice. Teclmically this could be divided into prediction and filter­
ing, computation outside the interval of estimation or computation inside the 
interval of estimation. It has to be stressed that great care must be taken us­
ing models to predict behaviour outside their interval of estimation, but usu­
ally it is the only available option, particularly if one is dealing with the future. 
As compared to prediction methods using transfer functions, as is common in 
timeseries modelling, no infonnation is available on the decrease in prediction 
quality as the (lead) time increases. This may be a serious shortcoming of the 
method in this context. The confidence interval of the prediction is only hased 
on the distrihution of the parameters, not on the time elapsed. This may not be 
a big problem if a short period ahead is predicted. The rest is simple. Assume 
H is the covariance matrix of 0, the exponent is computed as 

n 

A t) = L Odi(t) 
i=1 

and (T2( t)) = 2::i~1 2::j=1 fi(t)h(t)Hij Using this result a confidence in­
terval can he computed, using 1100mality assumptions. This results in 'IN t) E 

(t),1j1,,(t)].Itisthenassumedthatq)(t) E [exp(1/)/(t)),exp( (t))]. 

4.2.2 The cumulated residuals at time t 

Another application is the equivalent of a cusum (cumulative sum) analysis in 
timeseries analysis or quality control. In this context it is a comparison of oh­
served points to the predictions of the model. Essentially this is the cumulated 
residual of the model up to time t: 

CR(t) = N(t) -1ot 

6(s)ds t 2 to (4.1) 
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This function can be defined both within the timeframe of estimation and out­
side the timeframe of estimation. The latter will be the usual application. 

The version within the timeframe of estimation is usually used in the context of 
goodness-of-fit analysis, see § 3.5.2 for more details. The alternative is usually 
used to test model validity to support predictions. Teclmically, referring to cu­
mulative sum techniques, the cumulative residual technique is used to find out 
if or when the data diverges from the model. Ideally it is found that the model 
seems to fit tlle data well after the estimation interval, suggesting the model 
might also do so in tlle future. Other applications include intervention analysis 
in § 4.3. 

It is assumed tllat fie accidents after fie timeframe are independent (or its de­
pendence can be neglected) of tlle accidents within the timefnune, based on 
which the parameters are estimated. Therefore it is asswned that tlle error distri­
butions in N (t) - N (to) and J are independent. Then, using the usual norn1a1-
ity <L<:;SUl11ptions, a confidence interval for (.f R( t) in equation 4.1 can be com­
puted. Under Ho, the model being correctly specified and valid after estimation 
period: to > T, T tlle end of the estimation period. 

a 2(C'R(t)) = a 2(N(t) - N(to)) + a 2(it )ds 
to 

Thcn it is (only) assumed that a 2(N{t) - ;V(to)) (J)(s and that 

(J~~) $( '" )cls) c,m be well approximated to first order by: 

i
t A 

a2
( (p(s)ds) =.lHg 

to 

His tllC covaliance matrix of Band 9 = (a/p(.<;) / aB)d.s. Onc prohlem that 

is not solved is tllat a 2 ( N (t) - N (to)) = may not be a very good ap­
proximation bccause something similar to overdispersion or underciispersion 
might occur. This will influence the results, by systematically e..<;timating the 
vari<mce incoITectly. 

4.2.3 The integrated intensity at time t 

The intcgrated intensity is tlle integral of tllC intcnsity a1onc. It Cal1 be viewcd 
as a combination of § 4.2.1 al1d § 4.2.2. Thc main diffcrcnce will bc tllat it is 
computed for intelvals. Thus: 

Computation of confidence intervals is almost equivalent to the case of § 4.2.2, 
except for the fact tllat the variance of separate intervals may not add lip to the 
varhmce of tl1e joined interval. This Call be seen by: 

(91 + 92)' H (g I + 92) t= g~ El 91 + g~ El 92 

The difference 2gi H g2 may not callcel outside the interval of estimation. 
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43 Intervention analysis 

As already mentioned, intelVention analysis is <m application of this metllod, 
As of Box & Tiao [1975] and earlier, a large number of applications have heen 
proposed, including Harvey [1985], with application to road safety research 
Harvey [1986] and using the same method Emst & Bliining [1990] also in road 
safety research. Although these methods are ha<;ed on different assumptions, a 
few of these viewpoints can he used in this context: 
- An intelVention can cause more that just a ch,mge in level. In applied work 
one should not lose the main object under investigation. In most traffic safety 
work tl1e prime interest is (the nunlher of) accidents or casualties. Sometimes it 
can he useful to study a change in the pattem, not just the sheer number. Clearly 
the prime interest is some function of the process. 
- The use of control groups in experimental research is essential: a change 
found in some process should always be supported by not finding a similar 
change in anotl1er (relevant) process. TillS suggests the use of multivariate 
models, analysing more processes at one time. 
- Multivariate models are difTIcuIt to handle ,md good implementations seem 
rare to find. [Harvey, 1985, p 39] states that, under certain (homogeneity) con­
ditions the single dimensional (single equation in tenns of Harvey [1985]) 
model might sufTIce. It seems more recent work (fj Kendall & Ord [1990]) 
hardly improves this situation. This means t11at experimental groups and con­
trol groups must be analysed separately in most cases, our case is no exception. 
- Apart from time series teclmicalities, it seems cardinal to identify intelVen­
tions first 'by tl1em selves' , for instance using a cumulative sum technique, used 
hy Harvey [1986] hut not by Box & Tiao [1975]. TillS technique works as f()l­
lows: assume an intelVention is supposed to take place at time t1 • Then a time 
series is estimated (or identified) up to a time point to well before t1- What is 
meant by 'well before' will be the ever retuming expert's guess. Then the es­
timated model is used to predict the obselVations a<; of to. This is analysed hy 
tJle cumulative sum technique. Hopefully, the model seems to fit for some time 
after to, supporting the suggestion that tJ1e model is con'ectly identified. If the 
intelVention really had an effect, it is assumed tl1at the model diverges, or bet­
ter, misfits, after or about t 1• This method should be favored over metllOds that 
simply use plug-in type dummy variahles representing intelVentions, and val­
idations of tl10se intelVentions based on the importance of tl10se dunlmy vari­
ables in tllOse models. Not seldom one seems to fmd a significant effect using 
a dummy variable while the true intelVention point is at some other time and 
the change in tl1e series is due to something else. Therefore it is regarded as 
favorable to estimate tJ1e intelVention time before modeling it. Of course, the 
estimate of tl1e intelVention time may differ a little from tJle intelVention time 
tllat is to he modeled, but it may not he too far off to allow for altemative ex­
planations. If tlle intelVention is positively identified, tllen (possihly dummy) 
exogenous metllOds can he used. One problem of fue above mentioned metllOd 
is clearly tlle availability of sufficient data, particularly before tlle intelVention 
point. This is a particular problem in the area of traffic safety where some­
times intelVentiOI1S are executed shortly after a problem is identified or suit­
ably mea<;ured. It is a rare case where a prohlem is identified and studied for 
a number of years before some intelVention is made. It usually results in 11011-

systematic infomlation (changing over time) and statistical problems tllereof. 
At tl1is point the model is restricted to tlle search of intelVentions points only. 
BOtll tlle cumulative sum and tlle 'before-after' techniques are supported, a1-

41 



though the cumulative sum technique is emphasized. Implementation of the 
cumulative swn technique can be found in § 4.2.2. 

In Chapter 5 and Chapter 6 examples ru'e shown. 
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5. The simulation of problems 

5.1 Overview 

Obviously, introduction of a new method or even a new implementation re­
quires careful testing. In this section results of some testing are shown. Hope­
fully it covers a sufficiently hroad spectrum of prohlems. 

As mentioned in various previous sections, tile intensity function is assumed 
to be an element of a certain class. This class is taken to be like equation 3.24. 
A predominant class of tests is based on that assumption. Another situation is 
when the true intensity is not in that class. From anotiler point of VIew, stoch­
aslic properties can be studied. These consist of asymptotic results, overdisper­
sion and the like. The first is done here, alheit approximately, the second is not. 
It is omitted mainly to reduce the amount of work involved and the necessity 
of adapting ti1e simulation process. What has been done in tins direction is a 
little degenerated, removing all stochastics in the simulation. This was done in 
the early stages and not reported here. 

Apart from testing the estimation process, the derived statistics can be studied 
too. Particularly the cumulative sum teclmiques need attention. Results can be 
found in § 5.4. 

5.2 Simulating accident data 

In tltis subsection a strategy is shown for simulating data. It is mainly based 
on [Grandell, 1990, lemma 4 and lemma 5, page 34]. This lemma states that 
non-homogenous Poisson processes can be converted in homogenous Poisson 
processes and vice-versa. This is done through a time transformation. 

The procedure is now as follows: 
(l)Generate an intensity function that has the required properties. 
(2)Defiue the interval of estimation, denote it by [to, T]. 
(3)Produce exponentially distributed random data points ()1, Oz • .•. ,md: 
(4)Compute tk as the solution of: 

(5.1) 

(5)Stop if the nwnber of points reaches a specified maximwn or if 7' < tn +1. 
Then 11 points have been simulated. 
Alongside this simulation a number of statistics are being computed. These are 
merely designed to relieve the experimenter when tile model fails to fit the data 
in a sufficient manner by testing the true intensity by a Kolmogorov-Smimov 
test or when certain properties could not be recovered from the analysis. For 
these cases the intemal Wald test (§ 3.7.2) is computed to test whether the true 
parameters could be identified at all from tile data. These tests can fail to give 
the expected results because of the random nature of the experiments and, prob­
ably most important, because not enough data is used to identify the model 
properly. 
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Concluding, only Poisson models have been used to test here. Apart from ex­
ponential intensity functions, quadratic models have been used. 

53 Practical problems 

5.4 Some examples 

A few practical problems are noteworthy. 
- Equation 5.1 cannot be solved analytically. This could have been solved by 
a numerical method but tlns was deemed (again) too computationally inten­
sive in case many points are simulated. It was chosen to approximate the in­
tensity function by a stepfunction. This relieved the previous problem but it in­
troduced the possibility of the Gibbs-phenomenon, well known from spectral 
analysis (unexpected peaks due to the 'sharp edges' created by the stepfunc­
tion). It should be borne in mind that tills effect can occur. It also restIicted the 
maximum complexity of tlle simulations somewhat. 
- The expected number of simulated points is an attractive feature to have con­
trol over. TIns means that, given randomly chosen parameters Oi, it effectively 
modifies the generated parameters by forcing J q:,ds = n for some n. This in 
turn results in a not independent generation of tl1e parameters. This last effect 
has been neglected. 
- In the simulations, the number of expected points is controlled. The random 
simulated parameter values generally do not result in an intensity with tlle ex­
pected number of points. A correction scheme is designed for tlns. The correc­
tion scheme of the expected number of points is different for exponential mod­
els and quadratic models, although the matllematical mechmusm is tlle sanle. 
Simply <p is multiplied by a constant. In the exponential case tllis merely results 
in chmlging 00 , in the quadratic case all parameters are multiplied. Adding a 
constant to eo in tins case leads to relative ftattelnng of tile resulting intensity 
function, yielding mudentifiable parameters, which was found unwanted. 
Alongside tlle points, a dataset is created containing the true intensity and an 
estimate of it based on tile generated points using tlle kernel-method of § 3.4. 
The choice of the kernel width was based on the maximum complexity of the 
simulatioIl. This number was thus known allead, which does not reflect real­
ity. The results can be seen as indicative, mId cml be used to compare Witll the 
estimated intensity generated by the maximum likelihood method. 

5.4.1 n -+ 00 and more 

In fuis simulation an intensity function consisting of five tenns, level, ), 
cos(27ft), cos(47ft) and sin (47ft) is used. No trend W<h'l included. The simu­
lation ranged from 0 to 4, thus containing two entire cycles. The models were 
estimated on the data of the first period (0 to 2). A total number of points of 
1000, :JOOO, 5000 mld 7000 were anticipated for tl1e total period, so about half 
of them were used in actual estimations. This is the most important reason for 
not including a trend in the model. 

The tenns, and some results are listed in table 1. The level tenn was omitted in 
table 1 because its value is different depending on the number of points. The 
first model (n = 1000) failed to identify the parameters correctly using the 
standard scheme. It did identify the parameters when the analysis was extended 
until also tile gradient test was satisfied. This metllod is now called tlle extended 
model. 
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Coefficien n=lOOO n=3000 n=5000 n=7000 

cos ( 11 t) -0.769 -0.6097 -0.6026 -0.6383 

cos(211 t) 0.000 0.5425 0.6159 0.5639 

cos( 411 t) 0.000 -0.2203 -0.2245 -0.2101 

sin( 411 t) 0.000 -0.1906 -0.2043 -0.2197 

Table 1: Subsequent values of the parameter estimates while increasing n. 

The following figures show the prediction (or restoration) of the intensity func­
tion. In figure 5 (71, = 1000), figure 20 (n = :3000),figure 21 (n = .1000) ,md 
figure 22 (n = 7000), the (95%) upper and lower limit are graphed together 
with the true intensity function. It is visible that the intensity is not perfectly 
contained in the confidence region in figure 5. This graph uses the extended 
model. It may be tlle case that the model is not functioning very well at this 
number of points or the confidence ranges may be too small. because the de­
viance is not that much so it seems. In the other graphs. no such problems oc­
cur. These graphs, figure 20 (n = :3000), figure 21 (n = .1000) and figure 22 
('11 = 7(00) are listed in the appendix. 

700.0 

525.0 

350.0 

175.0 

o.o-t---,---r----.----r--.---,------r---, 

Figure 5: Predictions and true intensity of n = 1000. 
In contrast to the models based on more points, this model seems to show an insufficient 
confidence region. This problem sometimes arises when few points are used. Of course. 
this can also be caused by the f'dndom nature of the model. 

Another feature is the cumulative residual, see § 4.2.2. In the following the fig­
ures are figure 6 (n = 1000), figure 7 (n = 1000) and figure 8 (n = 7(00), 
figure 23 (n = :3000), figure 24 (n = 5000) are in the appendix. The most 
striking effect may be the fact that in figure 8 (n = 7000) the cumulative 
residuals indicate a diversion from the model. This effect also surfaced in the 
n = 10000-case (which is further omitted). In general, a tendency toward 
'breaking out' through the lower limit seems to show up. TIns may be an indi­
cation of a non-symmetrical distribution, which is not assumed in § 4.2.2 where 
nonnality is assumed. This phenomenon has not been studied further, although 
there might be sufficient reason to do so. 
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Figure 6: Cumulative residual graph of n = 1000. 
Note the relatively large fluctuations in the residuals. This is possibly due to premature 
convergence. The estimation procedure was extended to satisfy integral tests a.') well. 
The results are graphed in figure 7. 
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Figure 7: Cumulative residual graph of n = 1000. Integral convergence 
The model used to create these results satisfied both goodness of fit <Uld the gradient 
test of § 3.7.3. Clearly the results are better. Improvement of this kind is rare however, 
in most cases the both results are identicaL This may indicate that the goodness of fit 
tests needs additional support in small-sample cases, which is not surprising. 
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125.0 

0.0 -( ..... V"_....-._ 

-125.0 
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() 

Figure ~: Cumulative residual graph of n = 7000. 
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Another explanation may be that the prediction 'lead' is simply too long. Al­
though it sometimes seems to work pretty well, it may be risky to predict that 
long ahead compared to the length of the estimation period. Extending the es­
timation like in the n = 1000 case did not solve this problem. 

Yet another feature is the integrated predictions based on the integrated inten­
sity, see § 4.2.3. Using a more or less arbitrary 0.01 interval length, t1le number 
of points in those intervals are graphed together with t1le confidence intervals 
based on § 4.2.3. Although the met1lod of computation is similar to the com­
putation of the cumulative residues, no indication seems to show up t11at t1le 
lower limits seem to be to high. This supports t1le idea t1lat the predictive pe­
riod is simply too long to be reliable in figure 8, although individual counts 
seem to fit sufficiently. 

Figure 9: Graph of integrated prediction interval and tabulated points 11 

1000, extended estimation. 
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Figure 10: Graph of integrated prediction interval and tabulated points 11 

7000. 

The procedure is t1le same as for t1le predictions and the residues above. The 
case (n = 1000, with extension) and (n = 7000) are graphed here in figure 9 
(n = 1000) and figure 10. The others, figure 25 (n = :3000) and figure 26 
(n = 5000) are in the appendix. Only rarely the number of observed points is 
outside the confidence interval. 
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5.4.2 indicatinR underspecification 

In this set of simulations a term is modified to a specific order. The object of 
this simulation is to try identifying the case that the model is underspecitied: the 
maximum complexity is too small. The anticipated condition is that the gradi­
ent test (§ 3.7.3) indicates the model cannot be improved while the (modified) 
Kolmogorov-Smimov test (§ 3.5.2) indicates lack of fit. 

I Teml 
: Trend 

I cos(Tit)* 

Sill(2Ti t) 
sil1( :)Ti t) 
co8(:31I t) 
c08(20Ti t) 

Table 2: Parameters and terms used to test underspecification 

0.07870 I 

OJ)4918 

0.66789 

-0.37012 

0.48918 

1.00000 

*cos( Tit) did not test significant in the n = 1000 case. The wald test based on the true 
p,muneter value was significant at the :3.0:3484 x 10- 1 level. The model did not identify 
the term. 

In tIllS case the new tenn is cos(20Tit). The other tenllS are: trend, level, 
COs ( Tit), sin(2Tit), sin(:3Tit) and C08(:37rt), see table 2. 

20.0 

7.5 

-5.0 

-175 

·30.0 

() 2 

Figure 11: Residues under misspecification and correct specification n 
1000, Ok = 1.0. 

A model of order 25 is tested first. The model barely identifies the underspec­
ification. The modified Kolmogorov-Smimov test is significant at the level 
0.0445 (0.0086 in the case of n = ;)000). The munocIified Kolmogorov­
Smimov test is significant at the level OAt3. Another simulation, using O.!) in­
stead of 1.0 as the coefficient ofthe extra tenll, could not identify at n = 1000. 

The next figures show the residuals within the estimation interval. In figure 11 
the lines of the misspecified ,md the sufficient specified models are drawn. The 
improvement it is obvious. From the 'misspecified' line the order ofthe missing 
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Figure 12: Residues under misspecification n = 1000, th: = O.f), 

telID can be counted. This will not be as easy in general presumably. In figure 12 
the case with fh: = O.f) is dmwn. The residues are less in magnitude. They turn 
out to be insignificant (level 0.:348) in the modified Kolmogorov-Smimov test. 
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-400,0 
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Figure 13: Cumulative residual graph oJ n = 1000, underspecified case with 
(h: = 0.8. 
Cumulative residues indicate deviance of the model in the most obvious manner. The 
line on the bottom depicts the cumulative residues. Extending the model improves the 
results importantly. 

Following these results an intelIDediate model is simulated using Ok = 0.8. 
TillS should be a barely identified case, will ch turned out to be the case. Then 
predictions are dmwn from tIllS model. It should be shown that missing out the 
telID because it was not identified may not be tIlat catastrophic. Two gmphs are 
dmwn, figure 13 containing tIle results from an = 1000 (tI1e actual numberin 
[0,2] was 11 = 4(2) case witI1 Ok = 0.8. The model is obviously insufficient 
for tI1e period [2,4]. The cumulative residues indicate tIllS, again on the lower 
bound. Extending the model to satisfy tI1e gradient test yields a sufficient model 
for [2, 4}. These results are gmphed in figure 14. From figure 13 it is clear that 
in case predictions have to be made, estimating up to some time before the time 
point of which the last data are available, is very important. 
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Figure 14: Cumulative residual graph (~f n = 1000, underspecified case with 
Ok = 0.8 in extended setting. 
Cumulativeresidues indicate no deviance of the model. Extending the model improved 
the results considerably. compared to the not extended case. It must be noted that the 
margins ~rre much wider than those generated by the not extended case. 

Tenn 

Trend 

Level 

sin(27rt) 
cos(287r t) 
sin(:317r t) 

Table 3: Parameters and terms used to test a non-exponential model 

5.4.3 The quadratic case 

1.5421 

-2.0013 

This simulation is used to see whether the model works acceptably if the true 
intensity function cannot be written as is supposed. Instead of a exponential 
function, a quadratic function is used, retaining the positiveness of the intensity 
function. As is done in the n -'r oo-case, the analysis is carried out in conjunc­
tion with a prediction. Again, points are sampled in the interval [0. and the 
models are estimated using the infonnation in [0,2]. Then the period [2, .1] is 
predicted. It already turned out that this can be too big a period. In table 3 the 
parameters are listed. 

The model actually fits the following: 

See figure 15 for acompmison ofthe estimated model mld the simulated model. 

In figure 16 the cumulative residues are graphed. The residues break out at the 
end of the interval. See figure 17 tor the integrated predictions. 
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Figure 15: Predictions ofn = GOOO, quadratic case. 
Predictions by the approximate model of table 4. Upper and lower bounds of the es­
timated exponential model are graphed together with the actual simulated quadratic 
model. 
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Figure 16: Cumulative residual graph ofn = 5000, quadratic case. 
Cumulative residues of the approximating exponential model of table 4. Only at the 
end of the prediction period the model beaks out the lowerbound. Another example of 
this feature. The extended model, convergence set at the gradient test as well does not 
solve this problem. 
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Figure 17: Integrated Predictions ofn = 5000, quadratic case. 
Integrated Predictions of the approximating exponential model. The observed counts 
rarely violate the confidence bounds in the estimation period. It can be doubted whether 
this model would have been very useful in practice except for the fact that the process 
is found to be periodic and decreasing. of table 4. 
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Term 

Const 

Trend 

SIll ~7f t . (') ) 

cos( 7i t) 

X.OO? i 
-O.16X I 
0.293 i 

i 

-(U166 

Table 4: Parameters and terms estimated to fit a non-exponential model 

5.4.4 Some conclusions 

In general the model seems to work well. In almost all cases its predictive 
power seemes to be sufficient, although in some exrunples the periodicity is not 
very well fitted. This particular problem exists mainly when few cycles have 
been observed. If the wave is substantial, but not too substantial, ruld the wave­
length is long compared to the total period, sometimes the estimated wave­
length is just off. This results in 'wave' residues. TIlis means that onl y predic­
tions based over a longer integrated period can have satisfactory precision. 

Another observation is tlmt the model in tlle limited number of observations 
case insufficiently indicates model devirulce whereas the extended ca<;e, need­
ing satisfaction of both the goodness offit test and the gradient test works bet­
ter. It is probably caused by lack of power of the goodness of fit in tlle small 
sample case because tlus phenomenon does not surface in ca<;e of more obser­
vations. In case of similar simulations it seems not to happen ,mymore at about 
n = 1000 observations really in the estimation procedure. In general t1us will 
depend on both the number of tenns ruld their values (and their interrelations). 
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6. Real life example 

The maximum likelihood model is not designed to estimate simulated data. In 
this section real data, consisting ofinjury accidents, are <malysed. One problem 
that shows up is the fact that the infonnation necessary for an analysis is not 
available in the distant past. Presently, inforrnation is available since 1979 and 
in some respect, since 1976. TIns means theoretically data from 1976 to the 
first half of 199:3 can be analysed. In practice a shorter period of data has to 
be analysed. This is because consistency in tlle data is needed, interpretations 
change over time, and the registration lags for some accidents. In recent times, 
a major upgrade in the data structure took place by 1-1-1983, which is now 
chosen as to, the starting point. TIns recent starting point precludes analysis of 
safety-belt data and alcohol legislation. 

A second consideration is that no exogenous variables can yet be included. This 
means that any planned analysis of an intervention should involve an inter­
vention tllat did not influence tlle mobiI ity of any kind or the use of particular 
modes of transportation. TIns restriction implies analysis of interventions tllat 
are not sUlTounded by important changes in usage of traffic. This happened for 
instance in the oil-crisis in tlle early seventies, which is too early anyway, or a 
quite recent possible intervention is the so called 'ov-jaarkaart' (season-ticket 
valid for all public transport) for students. This seemed, not thoroughly proven 
yet, to have reduced use of mopeds significantly, in favor of public transport. 
Preliminary anal ysis indicates a sharp decrease in the total num ber of casu alties 
since introduction. But tIlls happens in the younger age group as well. There 
could be some other explanation too. This example cannot be analysed until 
tllis lack of infonnation is resolved. The Gennan data in figure 1 are unavail­
able to the author at tins level of disaggregation. Otherwise tllis would have 
been illl ideal option. 

An option available is the introduction of reflective billlds OIl or in wheels of 
bicycles. Use of tllese becillne mandatory at 1-1-1987, but introduction pro­
gressed slowly. It was anticipated tllat tile measure would not influence tlle use 
of the bicycles at all illld would only have an influence on side accidents in 
which the bicycles are hit fTOm tl1e side. It is also assumed tl1at tile main effect 
of tlle measure is in twilight or darkness, which is tlle most dangerous period 
of the day for bicyclists. 

The analysis of tlle data is used as an example, it is not intended as an traffic 
safety ill1alysis, in which many more considerations have to be made. 

The analysis is based on two groups, tile side impact group and the non-side im­
pact group. The definition of side impact is based on the manoeuvre, not based 
on the physical point of impact on the bicycle. This is registered, (as far as it is 
reliable) but it C,ill be very misleading in tllis application. The analysis is based 
on tile first :3 years, tllat is 198:3,1984 and 1985, the the lead period before tile 
supposed intervention is 1986, just before tile intervention took place in 1987. 
The first ;) year period produced 12277 side impact accidents, neglecting the 
few two-bicycle accidents in tile dataset tl1at are due to the poor lighting ca­
pacities probably not influenced by the intervention. The number of non-side 
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impact accidents was 26628 in the same period. 

After some experimentation, a period of 7 years was found to be a reasonable 
base period. This period is translated in a time of 27r in the analyses. The terms 
listed in tJ1e respective tables reflect the fact. The side impact solution is listed 
in table 5. The non-side impact solution is listed in table table 6. 

tenn (} tern} (} 

Const 2.:387 sin(182t) 4.6()O X 10-2 

sin(7t) -1.2fio x 10-1 sin( 14lt) -·U\:32 x 10-2 

sin(28t) -9.626 x lO-2 cos( !)2t) _cUH"" x 10-2 

cos( ()4t) 9.491 x 10-2 sil1(98t) 4.700 x lO-2 

cos(7t) -9.209 x 10-2 sin(2:3t) 4}i77 x 10-2 

cos(:35t) -7.951 x 10-2 sin( 4·4t) ,1..')80 x 10-2 

sin( 48t 7.818 x 10-2 4lt) -·1..1 17 x 10-2 

cos(l5t) 1.090 x 10-1 Sill( 80t) x 10-2 

sin(9t) 7.282 x 10-2 sin( 189t) 4.207 10-2 

cos(14t) -7.288 x 10-2 sin(l:30t) 4. H{·± x 10-2 

cos( 112t) -6.927 x 10-2 cos(12t) 4.:3()7 x 10-2 

sin(66t) -().79{) x 10-2 sin(l27t) --1.07:) x 10-2 

cos(lO!)t) -{).2{):3 x 10-2 cos( fi7t) :~.Htn x 1O-:l 

sin(14t) - 7 .071 X 10-2 sin( 1 05t) ::>.H·!o x 10-2 

cos( 115t) 5.157 x 10-2 cos(2t) 4.0.1.1 x 10-2 

sin(146t) -4.9:32 x 10-2 

Table 5: The solution of the model based on the non-side impact acci­
dents{3jJ7j) 
TIle period of 7 ye,rrs is tnUlslated in a time of 27r. All tenns ,rre listed based on the 
Wald test. The tenns on top me tested most signific,ult. All terms tested significlUlt. The 
adapted Kolmogorov-Smirnov test was (b,rrely) signific(Ult at the 0,05026504D level. 
Also a lmge number of points seem to be necessmy. The gradient test was not satisfied. 
A cumulative residual plot GUl be found in figure 18. 

All tenns listed tested significant on tJie Wald test. The telms on top tested most 
significant. The adapted Kolmogorov-Smimov test was (barely) significmlt at 
tJ1e 0.050265049 level in tJ1e side impact case. Also a large number of terms 
seemed to be necessary to get a sufficient fit. A cumulative residue plot cm! be 
found in figure 18. 

The non side impact case yielded amore attractive solution. The solution tested 
well on the adapted Kolmogorov-Smimov test, the test was signilicm1t at tJ1e 
0.1 17284009 level, and needed not much tenns. A cumulative residue plotcml 
be found in figure 19. 

The gradient test was not satisfied in eiilier model. 

What was hoped to see in figure 18 can be seen in figure 19, depicting the num­
ber of side accidents WitJl at least one bicyclist involved. Unfortunately, even 
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I tenll () I teOll () 

I Const :3.128 I cos(lt) !).7!)?) x 10-2 

I cos(7t) -:3.14:3 x 10-1 cos(24t) -1.0.11 x 10~1 t 

sil1{7t) -1.90:3 x 10-1 sin(28t) -7.101 x 10-2 

sin( 4St) 1.056 x 10-1 sin( 6:)t) -6A27 X 10-2 

cos( 1 i)l) 1.295 X 10-1 I cos(76t) :3.8% X 10-2 

sin( :34t) 7.8:39 X 10-2 I sin( 2;-)t) 9.501 X 10-2 

cos(14t) - 7 .956 X 10-2 

I 
sin( 14t) -·1.284 X 10-2 

cos( 141t) -;-).9:31 X 10-2 cos(29t) ·t:{27 X 10-2 

cos(26t) 1.079 X 1O-1~()s(64t) ~.7;)() X 10-1 

Table 6: The solution 0/ the model hased on the non-side impact acC/­
de nts( 3 j/7 j) 
The period of 7 years is translated in a time of 21l". All tenns are listed based on the 
Wald test. TI1e terms on top are tested most significant. All terms tested significant. 
TIle adapted Kolmogorov-Smimov test was significant at the 0.117284009 level. The 
gradient test was not satisfied. A cumulative residual plot c,m be found in figure 19. 
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Figure 18: Residues o/bicyclist side-impact 
This model was estimated bm,ed on the first three years, 1 ~)R;) -1 985. Around day 1460 
the intervention should start its influence. Unfortunately, this is not clearly visible, if 
at alL The wave in the estimated period may indicate a basic wave not in the modeL 
Inspecting the whole period, probably a 14-year base period may be needed. It has to 
be doubted however, in recollection of the results in the simulation study, that such a 
wave c,m be estimated reliably from the data. 

after specific checking, this graph depicts the non-side impact accidents. The 
effect of intervention should have started at around day 1/162 (1987), so the 
first year after the estimation period seems to be predicted well by the model. 
Somewhere in the second halve of 1987 the model seems to divert slightly. 
This may be caused by the short (:3-year) estimation period. The sharp decrease 
in the summer of 1988 may be the result of something special. It is thought 
that this cannot be caused by tlle deteriorating prediction quality, because of 
the sudden change. There seems to be no explanation of tllis phenomenon. The 
sudden decrease can also be found in tlle side-impact accident residues. In tllis 
case tlle peak is rather obscured by other peaks. 
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Figure 19: Residues of bicyclist non side impact 
What c,m be seen here is what was hoped to be seen in figure 18, depicting the number 
of side accidents with at least one bicyclist involved. Unfortunately, even after specific 
checking, this graph depicts the nOll-side impact accidents. The effect of intervention 
should have started at around day 1462, so the first year after the estimation period 
seems to be predicted well by the model. Somewhere in the second halve of IHH7 the 
model seems to divert slightly. This may be caused by the short (:~-year) estimation pe­
riod. The sharp decrease in the summer of 1988 may be the result of somethmg speciaL 
It is thought that this cannot be caused by the deteriorating prediction quality, because 
of the sudden ch,mge. Because the residues seem to proceed as before after some time. 
it seems there ha'> been a short period in which a relatively small number of accidents 
occurred. This effect c,m also be seen in the side impact accidents. although it IS rather 
obscured by other disturb,mces. 

From t11e traffic safety point of view, no conclusion cm1 be drawn from these 
results. This unfortunate result is followed by the conclusion that problems may 
have been caused by specification inflexibility. The problem in figure 18 may 
have been caused by the fact that the system of functions is too tight. It seems 
advisable to allow the user to specify certain functions a11ead. For instarlce it 
could be useful if the user can apply multiple systems to the model such a<; the 
hase model plus, in tIlis ca...,e, a number of terrns WitIl wavelength of about 14-
years. This would limit the total number of estimable parameters. There is no 
reason not to do tIlis unless the total nunlber of tenns is too much ,md one needs 
the scheme in § 3.7.4. 
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7. Conclusions 

From the results so far it can be concluded that the project is not completed. 
The model-method combination suffers from some shortcomings and could be 
improved at a number of points. 

The most eye-catching improvement would he improving tJle goodness of fit 
test. It has already been seen tJlat it does not seem to be very powerful in tJle 
current implementation. Confidence in the model would improve if the power 
of the test were increased. Some directions of research are available based on 
Durbin [1973] and Pollard [1984]. 

Another point may be found in the general application of (asymptotical) nor­
mality assUJ11ptions. In § 4.2.2 a tendency toward 'breaking out' through the 
lower limit of the cUJ11ulative residuals seems to show up. This may be an in­
dication of a non-symmetrical distribution of those residues. Normality is as­
sumed in § 4.2.2. This phenomenon should be studied further. Although not 
observed, this phenomenon will occur in other situations as welL In general. it 
could be studied if small sample tests can he derived for some of the tests used 
here. In practice this may not he possihle in all cases, if useful at all. 

Not many rohustness considerations have been applied so far. It has been found 
that a misidentification of a seasonal effect had serious consequences on the 
long-term predictions. Apart from the question of whether to use such predic­
tions at all, it can be argued tJmt small-term deviations in the data can have a 
long term effect. This is partly due to the Fourier system in use and essentially 
a consequence of long range functions. 

The total number of parameters to be estimated may cause a statistical problem 
on it's own. It may he argued that tlus implementation is essentially a infinite 
number of parameters problem, because no strict maximum of the complexity 
is used or that maximUJ11 is 'estimated'. It should be considered whether or not 
this invalidates some of tlle assumptions. 

Finally, by defining a good general goodness-of-fit criterion, this criterion can 
be used to validate tJle original count data techniques as well. The goodness-of­
fit criterion itself thus may be very useful in practice, with or without a system 
of functions. 

In the conclusion, in § 3.7.5 (Selecting more terms in one time) the use of 
the lagrange-multiplier test is omitted. It could be useful to test a increasingly 
longer version of 0 until either the lagrange multiplier test indicates insignif­
icance or the maximum nUJ11ber of terms that are allowed to he included is 
reached. 

57 



Bibliography 

Agostino, RB.D. & Stephens, M.A. (1986). Goodness-oj:fittests. Number 68 
in Statistics, textbooks llild monographs. Marcel Dekker, New York. 

Akaike, H. (1973). Information theory and an extension of the maximum likeli­
hood principle. In Petrov, B.N. & Csaki, E, editors, Proceedings of the Sec­
ond International Symposium of Information of Information Theory. pages 
267-281, Budapest. Academica Kiado, Academica Kiado. 

Box, G.E.P. & Tiao. G.C (1975). Intervention analysis with applications to 
economic and environmental problems. Journal of the American Statistical 
Association 70(349), 70--79. 

Braun, H. (1980). A simple methodfor testing goodness offit in the presence 
of nuisance parameters. Journal of the Royal Statistical Society 42.53-63. 

Cheng, R & Stephens, M.A. (1989). A goodness-of-fit test using Morans 
statistic with estimated parameters. Biometrika 76(2), 385-92. 

Durbin, J. (1973). Distribution TheOlY for Tests Based on the Sample Distribu­
tion Function, volume 9 of Regional conference series in appl. math. SillilL 
Philadelphia. 

Epps. T.W. & Pulley. L.B. (1983). A testfor normality based on the empirical 
characteristic function. Biometrika 70(3), 723-728. 

Emst, G. & Brtining, E. (1990). Funf lahre dcznach:, Wirksamkeit del' 'GurUll1-
legepjUchtfur Pf...'W Insassen ab 1.8.1984'. ZeitschriJtfur Verkehrssicherhcit 
36(1),2-13. 

Fleming, T.R & Harrington, D.P. (1991). Counting Processes and survival 
analysis. Jolm WHey & Sons, New York. 

Fletcher, R (1981). Practical methods of optimization, volume 11. John WJIey 
& Sons, Chicester. 

Good, U. & Gaskins, R (1971). Nonparametric roughness penalties/or prob­
ability densities. Biometrika 58(2), 255-277. 

Grllildell, J. (1990). Aspects of risk theory. Springer-Verlag, Berlin, Heidel­
berg. 

Grenander, U. (1981). Abstract Inference. John Wiley & Sons, New York. 
Method of sieves. 

Hampel, ER; Rousseeuw, P.J.; Ronchetti, E.M., & Stahel, W.A. (1986). Ro­
bust statistics. John Wiley & Sons, New York. 

Hardle, W. (1990). Smoothing techniques. Springer-Veriag, Berlin, Heidel­
berg. 

Harvey, A.C. (1985). Multivariate time series models, control groups and in­
tervention analysis. Economics Programme Discussion Paper A53, London 
School of Economics, London. 

Harvey, A.C. (1986). The effects of seat belt legislation on British road casu­
alties: A case study in structural time series modeling. Journal of the Royal 
Statistical Society 149,187-227. 

Kalbtleisch, ID. & Prentice, RL. (1980). The Statistical analysis 0/ failure 
time data. John WHey & Sons, New York. 

Karr, A.F. (1991). Point Processes and their statistical inference. Marcel 
Dekker, New York, second edition. 

Kendall, M. & Ord, J.K. (1990). Time series. Edward Amold, London, third 
edition. 

Kendall, M. & Smart, A. (1987). Advanced Theory of Statistics, volume 2. 
Charles Griffin & Co, London. 



KuIlback, S. (1968). Information Theory and Statistics. John WiJey & Sons, 
New York. 

Luenberger, D.G. (1984). Linear and nonlinear prof!,ramminf!,. Addison­
Wesley, Reading, Massachusetts, second edition. 

Moran, P. (1951). The random devision of an interval-part ii. Journal of the 
Royal Statistical Society B 13, 147-150. 

Pollard, D. (1984). Convergence of stochastic Processes. Springer series in 
statistics. Springer-Verlag, New York. 

Press, W.H.; Flannery, B.P.; Teukalsky, S.A.. & Vetterling, W.T. (1989). Nu­
merical recipes in Pascal. Cambridge University Press, Cambridge. 

Rao, KC. (1972). The Kolmogorov-Smimov, Cramer-von Mises, chisquare 
statisticsfor goodness-of- fit in the parametric case. Bull. Inst. Math. Statfst. 
1, 67. Abstract 133-6. 

Serfiing, R.J. (1980). Approximation theorems of mathematical statistics. Wi­
ley series in probability and mathematical statistics. Jolm WiJey & Sons, 
New York. 

SI1 yder, D.L. & Miller, M.1. (1990). Random Point Processes in time and space. 
Springer-Veriag, New York. 

Statistisches Bundesamt. (1988). Verkehr, VerkehrsU!~fillle. Fachserie 8, reihe 
7. Statistisches Bundesamt, Wiesbaden. 

Stephens. M.A. (1986). Tests based onEDF statistics, chapter 4, pages 97-194. 
In Agostino & Stephcns [1986]. 

Stoer, 1. & Bulirsch, R. (1980). Intoduction to numerical analysis. Springer­
Verlag, New York. 

Wald, A. (1943). Test ofstatistical hypothesis concerninf!, several parameters 
when the number of observations is large. Tram;. Am. Math. Soc. 54,426-
482. 

White, H. (1982). Maximum likelihood estimation of misspec~fied models. 
Econometrika 50(1), 1-25. 

59 



Appendix A. Figures 

A.I 11 - 'x, simulation 

Following are graphs of the predictions of the maximum likelihood model. 
All graphs contain the upper ,md lower limits hased on the estimated model, 
together with the simulated intensity functions. From this view, it seems the 
model estimated the intensity well. 
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Figure 20: Predictions and true intensity of n = ;}Ooo. 
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Figure 21: Predictions and true intensity of n = 5000. 

Following are the Cumulative residuals of the n - ex:; simulation. The line 
over the entire length is the cumulative residual. The lines starting off 2 are its 
upper confidence level and the lower confidence leveL 

The last feature graphs of the case n - cc contain the results of the inte­
grated intensity functions. The intelvallength is 0.01, thus delivering ,WO in­
tervals. For every interval the number of simulated points are counted. Also 
both the upper and lower 95% confidence limits based on the respective mod­
els for these intervals are computed. Only in rare ca',>es the numher of points 
seem out of the confidence hounds. This number does not question the validity 
of tJ1e con1idence limits. It seems the region could be smaller still. 
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Figure 22: Predictions and true intensity of n = 7000. 
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Figure 23: Cumulative residual graph of n = ;3000. 
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Figure 24: Cumulative residual graph ofn = 5000. 

61 



30.0 

Figure 25: Graph of integrated prediction interval and tabulated points 11 
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Figure 26: Graph of integrated prediction interval and tabulated points 71 
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