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Summary

Traffic safety is not only indicated by the number of accidents, but also by
numerous accident-related outcomes like the number of people killed, the
number of people seriously injured, the amount of material damage, etc.
When assessing the possible effect of, for example, a road safety measure
on traffic safety, it is therefore important to be able to investigate the
differentiated effect of such a measure on accidents and accident-related
outcomes. 

In this study some statistical issues involved in the simultaneous analysis of
accident-related outcomes (such as the number of victims, fatalities or
accidents) of the traffic process were studied. The main focus of this study
was the covariation of the outcomes: the interdependencies of accident-
related outcomes were investigated by establishing their (theoretical)
covariance structure. Estimates of the covariances of normal approxi-
mations of joint distributions were derived for the following cases:

a. The total number of accidents, victims and fatalities in a certain class.
Examples of classes are monthly data, car-only accidents. 

b. The logarithm of the total number of accidents, victims and fatalities in a
certain class. 

c. The logarithm of the total number of accidents, the logarithm of the ratio
of the number of victims to the number of accidents, the logarithm of the
ratio of the number of fatalities to the number of victims. 

The quality of these estimates was evaluated using samples of real-life data
from the Netherlands. 
Distributional aspects like effects on the estimates of small numbers, of
small numbers of fatalities per accident, and of different types of accidents
were also investigated in this study. It turns out that deviations are generally
modest in most cases but may become serious when the counts are
smaller.

The following results were found: 
- It is possible to derive relatively simple expressions for the variances

and covariances of (logarithms and ratios of) accidents and victim
counts. As regards usability, some information needed to compute
estimates of the covariance matrices may not be available over a longer
period of time. However, in some cases this information can be
estimated.

- When performing a multivariate analysis using numbers of accidents,
victims, and fatalities as outcome variables, or any of the other outcome
variables mentioned above under b) and c), all three variables must be
used. This follows from the finding that each of the three variables
carries unique information that cannot be estimated from the other two. 

- The logarithm of the total number of accidents is (approximately)
uncorrelated to the other two variables mentioned above under c). This
means that the effect of explanatory variables on the logarithm of the
total number of accidents can be (approximately) assessed
independently, with no regard to the other two variables. 
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- The approximation of the logarithm needed when log-counts of
accidents victims or other accident counts are analysed, is usually
sufficiently close. In practice but depending on circumstances, problems
caused by the approximation are unlikely when counts are higher
than 30. 
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1. Introduction

This research was conducted within the framework of the SWOV research
theme ‘Road safety analysis’.

One part of the research in this theme consists of related and
supplementary studies intended to enhance the technical possibilities for
the analysis of the development of road safety in general, and for the
projects within the theme in particular. This part of the research is intended
to enhance both applicability and reliability of the analysis.

Other studies in this theme involve the disaggregation into road, traffic and
victim characteristics; use of economic and other explanatory variables,
among other things.

The main objective of the research theme is to find explanations for the
observed developments in road safety by studying the relationships
between these developments and (developments of) explanatory variables
such as road safety measures, changes in traffic volume, economic
developments, etc. 
Obviously, road safety is not a one-dimensional concept. It not only consists
of the number of accidents, but also of numerous accident-related
outcomes like the number of people killed, the number of people seriously
injured, the amount of material damage, etc.
When assessing the possible effect of a road safety measure on traffic
safety, it is therefore important to be able to investigate the differentiated
effect of such a measure on accidents and accident-related outcomes. This
typically calls for a multivariate multiple regression type of analysis, where
accidents and accident-related outcomes are the dependent variables in the
analysis. Moreover, when measures are introduced in a relatively short
period of time, without an analysis of the differentiated effects, it is
sometimes impossible to determine which traffic safety effect is caused by
which road safety measure.

In a classical multivariate analysis the dependent variables are assumed to
be unrelated to one another. This is reflected in the fact that in a classical
multivariate regression analysis with p dependent variables for example,
exactly the same regression weights are obtained as when p separate
univariate regression analyses are performed.
However, numbers of accidents and numbers of accident-related outcomes
are clearly related to one another. For instance, the number of road
fatalities is related to the number of accidents: zero accidents imply zero
fatalities, while an increase in the number of accidents is usually associated
with an increase in the number of fatalities. See for instance Cameron &
Trivedi (1998, p. 260) for a similar example. Failing to incorporate these
dependencies in a multivariate analysis may result in false conclusions from
the analysis.

In the present study the interdependencies between numbers of accidents
and (numbers of) accident-related outcomes are investigated by
establishing their (theoretical) covariance structure. The covariance
structure proposed in this report can be used to correct the dependencies
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between numbers of accidents and accident-related outcomes in a
multivariate analysis, thus yielding more reliable results.

The proposed method is not restricted to numbers of accidents, victims and
fatalities, but can be generally applied to any other type of outcome of
independent accidents, like, for example, medical costs and the total length
of traffic queues resulting from accidents.
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2. Problem analysis and set-up of the study

2.1. Problem analysis

2.1.1. The analysis of the (impacts on the) development of traffic safety needs more than just one
dimension

The development of traffic safety or the lack of safety (‘unsafety' for short)
is very often analysed following the development of one single relevant
phenomenon in relation to explanatory variables. However, in order to get a
better understanding of for instance the effectiveness of road safety
measures it would be better to study the potentially differentiated effect on
the different dependent variables as well. For example, it is likely that the
compulsory use of seat belts mainly has an effect on the consequences of
an accident, whereas measures aiming to reduce the occurrence of driving
under the influence of alcohol mainly have an effect on the number of
accidents. Speed reducing measures are supposed to have an effect on
both the number of accidents and the consequences of an accident.
Particular theories, such as for example the risk homeostasis theory (Wilde,
1994) and the zero risk theory (Summala & Näätäänen, 1988) state that
theoretically likely developments may be counteracted because of
behavioural adaptation. An example of this is the use of seat belts which
may, according to some theories, result in higher speeds and other more
dangerous behaviour, so that the expected reduction in the number of
injuries is undone by the fact that the number of accidents increases. Thus
in general it can be argued that road safety developments cannot be
measured by just one such accident consequence alone. Factors
influencing safety are likely to affect more than just one kind of
consequence. Hence, road safety analysis models would need to take
account of these multi-outcome characteristics. 

2.1.2. The impacts on the development of traffic safety need to be differentiated in time (and
‘space')

Firstly, for a good understanding of the road safety developments and the
differential contribution of various types of road safety measures, it is
important not only to look at the development of single road safety
indicators, but also to look into the coherence of effects of different
indicators and explanatory factors. Additionally, the development over time
should be considered, as changes in traffic safety should also be related in
timing to the implementation of the road safety measures that caused them.
A similar argument can be used to look into location aspects (for instance
road types). Confidence in the conclusions concerning the question of
effectivity of road safety measures is increased when the pattern of
influences reflects theoretical predictions (or the reverse). 
The main goal of this study is directed at the first issue: the influence of
road safety measures on different types of unsafety outcomes. The second
and third issues (time and location specific measures) are not within the
scope of this study. This study focuses on how to analyse related outcomes
simultaneously. 
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The analysis of the development of multiple consequences of traffic
unsafety over time is most likely best conducted using multivariate time
series. The multivariate character of time series analysis is in this case not
only reflected in the multiple explanation variables (e.g. traffic volume,
economic factors, weather conditions, and safety measures; to name a
few), but also by the fact that more than one consequence is studied.
Moreover, as is obvious in empirical sciences, the explanation variables are
based on estimates of some kind, sometimes a missing value. Its true value
is relevant and should in some cases be the same for all the consequences
under study. However, in order to be able to do so, a number of
methodological problems has to be solved. 

2.1.3. The issue of covariance

One important problem is that multivariate observations observe some
covariance. The most notable example is the fact that no more fatal
accidents can occur in a period of time than the total number of fatalities.
A more general example is that when more traffic accidents occur in a year,
it is likely that more people get injured in traffic as well. The former aspect
is not developed completely in this study, rather, an approximation is made.
This is done by developing an expression for the covariance (matrix) of the
(possible logarithms of) counts of unsafety outcomes. As such, the usability
of the covariance structure is not restricted to time series analysis. 

In the context of the last (more general) example, it can be observed that
when a relatively large number of accidents occurs in a certain year, quite
often a relatively large number of people gets injured as well in that same
year. This would mean a positive covariance between the number of
accidents and the number of injured. Now suppose two hypothetical models,
model ‘A' and model ‘B' are to be compared. The fact that model ‘A'
predicts say 10 more accidents and 10 more injured than are actually
observed in that year has to be interpreted quite differently than the fact
that model ‘B' also predicts 10 more accidents in that year but 10 less
injured. Roughly speaking both models are equally likely when covariance
is ignored and model ‘A' is more likely when the positive covariance
between the number of accidents and the number of injured is taken into
account. Even worse, if model ‘B' had predicted 5% less injured, it would
have been deemed more likely than model ‘A' if covariance is ignored,
possibly resulting in false conclusions about the significance of the
effectivity of measures studied. 

2.2. Report set-up

Chapter 3 describes and discusses the results of an analytic derivation of a
mathematical description of the covariance between the total number of
accidents (not necessarily injury accidents) and the total number of victims
in a time period. 

The analytic results were compared to results based on simulation,
sampling from real accident data from the Netherlands dating from 1980 to
and including 1999. The purpose is to assess the consequences in terms of
accuracy of some of the simplifications used in the theoretical derivations.
Two versions of simulations are described: one based on car-only accidents
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and one based on all accidents. The derivation itself and details of the
analysis involved are in the Appendix to this report. 

Chapter 4 describes the results of a trial study of the simultaneous
development since 1964 of some of the main accident outcomes in relation
to major explanatory variables and three road safety measures. In this trial
study the covariances found in Chapter 3 are used. No claim is made to be
complete at this point, specifically with respect to the use of explanatory
variables, as this development is subject to more elaborate studies in later
stages in this research theme. The purpose of this trial study is to evaluate
the usability of the technique. 
The method is applied to identify the potentially differentiated effect of three
road safety measures: 
- the introduction of the legal BAC limit of 0.5 ‰ (introduced in November

1974). This measure is expected to have had an impact on the number
of accidents, mainly accident frequency. 

- the introduction of the compulsory use of seat belts in front seats
(introduced in June 1975). This measure is expected to have had an
impact on accident severity. 

- the introduction in September 1990 of the administrative settlement of
minor road traffic violations, the Mulder Law. This measure may have
had an impact on the occurrence of various accident outcomes. 

Finally, in Chapter 5 the results are discussed and recommendations are
made. 
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3. Covariance structure of the traffic unsafety counts

This chapter summarizes the results derived from the study into the
covariance structure of the traffic unsafety counts. The main results are
given in Table 3.2. Details can be found in the Appendix to this document.

3.1. Method

Using the assumption of a Poisson distributed number of accidents as a
starting point, expressions for central moments of the number of victims
(and as a special case: fatalities) are derived using characteristic functions.
This is done using a method similar to the method used by Feller (Feller,
1968). Using these moments variance estimates are derived. Next, using
multivariate characteristic functions covariances are derived. These results
are used to derive (co)variances for logarithmic-transformed counts. 

In addition to the Poisson assumption it is further assumed that the number
of victims (or fatalities) per accident is identically and independently
distributed over the accidents. The consequences of deviation from this last
assumption in practice, mainly because different types of accidents may
have different distributions of the number of victims, are studied using
simulation techniques. The results thereof and other comparisons are
presented in the Appendix A.3. 

3.2. Results

Based on the results of the derivations as reported in Appendix A.1 and A.2
of this document, covariance matrices based on normal approximations can
be formulated between either the count variables, the logarithms of those
count variables or the logarithms of ratios of count variables. In principle,
other combinations are possible too, but have been omitted in this study. 

The following cases were developed: 
a. The total number of accidents, victims and fatalities in a certain class.

Examples of classes are monthly data, car-only accidents. 
b. The logarithm of the total number of accidents, victims and fatalities in a

certain class. 
c. The logarithm of the total number of accidents, the logarithm of the ratio

of the number of victims to the number of accidents, the logarithm of the
ratio of the number of fatalities to the number of victims. 

The basic assumption made in this study is that the number of accidents in
a period of time is Poisson distributed. Under this assumption the variance
of the number of accidents N is equal to its expected value �: Var(N) = �.
Both quantities are estimated by the observed number of accidents n. 
Table 3.2 provides an overview of all results while Table 3.1 contains an
explanation of abbreviations used in Table 3.2. 
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Number of Realisation Usually available Abbreviation

Accidents (acc) n Yes n 

Victims in accident i vi No 

Fatalities in accident i fi No 

Sum over all accidents 
of the number of Estimate Usually available Abbreviation

Victims (vic) �n
i = 1 vi Yes �v

Fatalities (fat) �n
i = 1 fi Yes �f

Sum over all accidents 
of the square of the number of Estimate Usually available Abbreviation

Victims �n
i =1 vi

2 No �v 2

Fatalities �n
i = 1 fi

2 No �f 2

Sum over all accidents of the
cross product of the numbers of Estimate Usually available Abbreviation

Victims and fatalities �n
i = 1 vi fi No �f v 

Table 3.1. Abbreviations used in the derived equations for variances and
covariances and estimates.

From Table 3.1 it can be seen that not all information is available in
standard publications on accidents. This is indicated by “No” in the “Usually
available” column. More detailed sources on individual accidents are
needed to get more precise estimates. In that case the individual fatality fi

and victim vi counts per accident will be available. Then the variance of the
total number of fatalities for instance can be computed as the sum of the
squared fatality counts as indicated in Table 3.2. In cases where it can be
assumed that no substantial changes over time should occur, values
constant for an entire period might be estimated. This should amount to a
solution similar to estimating a ‘scale' in generalized linear models. 

As regards the structure of the covariance matrices, no useful
dependencies can be found. This means that it is not possible to capture
the information on the number of accidents, victims and fatalities (or any of
the other two triplets) by using just two of the indicators (for instance
accidents and fatalities). In order to make sure not to lose relevant
information, all three indicators are necessary. For more information on this
see Appendix A.3.2. 

One interesting result (that can be derived from the last part of Table 3.2)
however is the fact that the logarithm of the number of accidents is
uncorrelated to the logarithms of ratios of the number of victims to the
number of accidents, and the number of fatalities to the number of victims.
This has advantages in certain statistical techniques. This case has been
studied in a trial study (see Chapter 4). The covariance matrix of these
three components is essentially taken proportional to the reciprocal of the
(expected) number of accidents.  However, one reservation had to be made
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in this case, because the variance of the logarithm of the ratio of the
number of fatalities to the number of victims is increasing even stronger
than can be attributed to the decrease in the number of accidents. This
seems to be caused by a decrease in the number of fatalities per accident
(see Figure A.6 in Appendix A.3.2). 

Results based on counts

Variance of Estimate

the total number of accidents n

the total number of victims a)
�v 2

the total number of fatalities �f 2

Covariance of Estimate

the total number of accidents and victims �v

the total number of accidents and fatalities �f

the total number of victims and fatalities �f v

Results based on logarithms of counts

Variance of Estimate

the total number of accidents 1/n

the total number of victims �v2
(�v)2

the total number of fatalities �f 2
(�f )2

Covariance of Estimate

the total number of accidents and victims 1/n

the total number of accidents and fatalities 1/n

the total number of victims and fatalities �f v 
 (�v × �f )

Results based on logarithms of ratios of counts

Variance of Estimate

the total number of victims to accidents     �v2
(�v)2  - 1/n

the total number of fatalities to victims �f 2
(�f )2 + �v2
(�v)2 	 2�f v
(�v�f )

Covariance of the logarithm of the total
number of accidents and

Estimate

the total number of victims to accidents 0

the total number of fatalities to victims 0

Covariance of the logarithm of the ratio of the
total number of victims to accidents and

Estimate

the total number of fatalities to victims (�f v)
(�v�f ) 	 (�v2)
(�v)2

a) Consequences of this result and the result for fatalities will be the subject of a separate study.
In case of all accidents, the variance of the total number of victims is up to about 50% higher than
the total number of victims.

Table 3.2. Derived equations for variances and covariances and estimates.
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4. Trial study of multivariate traffic unsafety counts

The example in this chapter concerns a trial study intended to demonstrate
the use of differentiated effect estimates of road safety measures and uses
one of the derived covariance matrices in Chapter 3. This example is
neither designed nor intended to give a definitive estimate of any of the
road safety measures included in the analysis. It is for demonstrative
purposes only, aiming to assess the usability of the technique employed.
The data used are selected on both possible relevance and the fact that the
data are readily available disaggregated into monthly data. 
In this trial study the following traffic safety indicators were analysed
simultaneously (data starting in 1964 - 1999). 
- the logarithm of the number of injury accidents, 
- the logarithm of the number of victims per injury accident. 
- the logarithm of the number of fatalities per victim. 
The following explanatory variables were considered: 
- (average) traffic index (index), 
- (average) temperature in ‘De Bilt' (T), which is a town situated in the

middle of the Netherlands, where the Meteorological Office is located
- duration of precipitation in De Bilt (D). 
The following intervention time points were considered: 
- the introduction of the legal BAC limit of 0.5 ‰ (introduced in November

1974), 
- the introduction of the compulsory use of seat belts on front seats

(introduced in June 1975), 
- the introduction of the administrative settlement of minor road traffic

violations, the so-called Mulder Law (introduced in September 1990). 

4.1. Method

A multivariate state space model was fitted to these data. State space
models are described in Harvey (1989) and, in the context of traffic safety,
in Harvey & Durbin (1986) and COST329 (In preparation). 

The general description of the model is as follows. The three traffic safety
indicators are each explained using the product of a ‘risk' development (not
a very well chosen name) and the three explanatory variables index, T and
D. The interventions are assumed to affect only the ‘risk' development as
they should affect safety, causing, if anything at all, a shift in the level of the
risk. The risk development is defined by means of a state space. A state
space is a series of vectors that is defined using a set of equations, defining
the next vector based on the current vector and possibly other information,
such as in this example interventions. In the currently used equations the
interventions may (if at all) cause a change of the level in three of the
components in the state space. These components denote the level of the
development of the ‘risk' for each of the three traffic safety indicators, and
are called the level components. This equation is called the ‘state equation'.
These individual vectors are also related to the three traffic safety indicators
through yet another equation, called the measurement equation in which the
indicators are explained using the state vectors and in this case explanatory
information (index, T and D). In this example only linear equations are used. 



16 SWOV Publication R-2002-24

It is this flexible set of equations that makes this method so useful because
it can be adapted to many practical cases in traffic safety. 
A multiplicative model is built by means of an additive model on the
logarithms of the accident data. 

In order to give a more precise description of the model (but still very
rough), first the vector of logarithms of the traffic safety indicators is
denoted by yt. The development of each of the indicators is thus assumed
to be related to some unique ‘risk' development and exogenous influence as
explained by the explanatory variables. The unique ‘risk' development
consists of a level and a drift component denoted together by ‘trend' and,
except for annual data, a seasonal component. The level component is
used to model the level of the risk while the drift denotes the systematic
change (drift) in the level of the risk. Other kinds of components are
possible but are not used here. This means (i = 1,2,3):

yti = trendti + seasonalti + log(indexti) + 2i×Tti + /i× Dti + errorti.

2i and /i are unknown parameters. Whether or not the (average)
temperature ‘T’ or the duration of precipitation in De Bilt ‘D’ should be log-
transformed has not been studied, but should be in a definitive study, as
can be stated for the fact that the log(indexti) has no coefficient. 

The vectors yt are linked to the state space as follows: 

yt = Ht zt + dt + 0t

where zt denotes an unobserved series of vectors (called state vectors)
which elements consist of trend, seasonal and possibly other components.
The vector 0t is assumed to be normally distributed with covariance matrix
Rt as estimated using Table 3.2 (or equation A.20) and independent of all
other random components. The matrix Ht is the appropriately dimensioned
measurement matrix. The vector dt is the vector of exogenous
contributions, by component it is: 

dti = log(indexti) + 2i×Tti + /i×Dti,

It is assumed that the state vector zt contains all relevant information up to
time t. This information is a combination of the prediction of the current
state based on the previous state and the most recent observation. The
equation used for prediction of the current state zt based on the previous
state zt-1 is 

zt = Ft zt-1 + ct + &t

The vector &t is assumed to be normally distributed with covariance matrix
Qt. The matrix Qt usually is to be estimated. The matrix Ft is the
appropriately dimensioned transition matrix. It defines how the current state
is carried over to the next. The vectors 0t and &t are independent of each
other and all other time points. Some components in zt are used to quantify
the level of the ‘risk'. It is these components that are influenced by the
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interventions by means of the vector ct, allowing a certain level change at
the time points at which the respective interventions became effective. No
effort was made here in this study to verify the time points at which the
interventions became effective. Level changes are assumed to be
permanent. 

Further details on state space models can be found in Harvey (1989), and
in the context of traffic safety, in Harvey & Durbin (1986), among others.

4.2. Results

The accident data were analysed using monthly, quarterly and annual data.
The purpose of this is to determine which of the three is best suited for
analysis, mainly as a result of the effect of including a seasonal pattern in
the state space. 

The accident data were analysed using data from 1964 - 1999. Not all data
were used. Rather, the observations of the last few (10, 5 and 3) years were
temporarily withdrawn from analysis and subsequently used for comparison
with prognosis from the models. This means that for the monthly data the
last 120, 60 and 36 months, for the quarterly data 40, 20 and 12 quarters,
and for the annual data the last 10, 5 and 3 years were held back in the
estimation procedure and were thus not used in the prognosis resulting on
that estimation. The held back observations were compared to the
prognosis results. In this study the length of prognosis was called the ‘lead'. 

In Figure 4.1 the development of the number of accidents is graphed. The
development is modelled per year in uninterrupted lines, three months
‘quarterly’ observations (lines with larger dashes) and per month (short-
dashed line). Results for quarterly and monthly data were aggregated into
annual data. The first four vertical gridlines denote the following time points
respectively: introductions of the alcohol law; the seat belt law; the
beginning of the last 10 years of observation and the Mulder Law. Don't be
tempted to interpret the effectivity of the measures just by the local
development of the number of accidents in the vicinity of the time points.
Other influences, like traffic volume, also influence the development. The
last vertical gridlines denote the beginning of the last 5 and 3 years
respectively. The ‘prediction' for the outcome observations in the estimation
period was attained using a smoothed estimate of the state, which resulted
in a rather close approximation of the outcome data. This should not be
confused with a good fit. Rather, the forecasts are better suited for this.
Figure 4.2 for victims per accidents and Figure 4.3 for fatalities per victim
have a similar layout. 
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Figure 4.1. The development of the number of accidents modelled per year
(uninterrupted lines, one line for each lead), quarter (dashed lines, one line
for each lead) and per month (short-dashed lines, one line for each lead),
dots are observed values. Results for quarterly and monthly data were
aggregated into annual data. The vertical gridlines denote the following time
points respectively: introductions of the alcohol law; the seat belt law; the
beginning of the last 10 years; introduction of the Mulder Law; beginning of
the last 5 and 3 years. 

Figure 4.2. The development of the number of victims per accident modelled
per year (uninterrupted lines, one line for each lead), quarter (dashed lines,
one line for each lead) and per month (short-dashed lines, one line for each
lead), dots are observed values. Results for quarterly and monthly data
were averaged into annual data. The vertical gridlines denote the following
time points respectively: introductions of the alcohol law; the seat belt law;
the beginning of the last 10 years; introduction of the Mulder law; beginning
of the last 5 and 3 years. 
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Figure 4.3. The development of the number of fatalities per victim modelled
per year (uninterrupted lines, one line for each lead), quarter (dashed lines,
one line for each lead) and per month (short-dashed lines, one line for each
lead), dots are observed values. Results for quarterly and monthly data
were averaged into annual data. The vertical gridlines denote the following
time points respectively: introductions of the alcohol law; the seat belt law;
the beginning of the last 10 years; introduction of the Mulder Law; beginning
of the last 5 and 3 years. 

The parameter estimates for the intervention effects are given in Tables 4.1
(for the alcohol law) 4.2 (seat belt law) and 4.3 (Mulder Law). These inter-
vention effects are the changes in the level components of the respective
‘risks': one for accidents (third column), one for victims/accident (fourth
column) and one for fatalities/victim (fifth column). The first column list the
time unit. This means that the records starting with a “Y” (“Y” for year) are
based on results of an analysis based on annual data (January through
December), “Q” (“Q” for quarter, a three month period starting in January,
April, July or October) are based on an analysis based on quarterly data
and “M” (“M” for month, entire months).

The second column indicates the number of time units that have been left
out of the respective analysis. In the first case this represents the last 3
years left out, in the second case the last 5 years left out and in the third
case the last 10 years left out. In the fourth case this pattern is repeated as
twelve quarters are left out and so on. 

The actual values in the tables indicate the shift in the level of the
respective risk components. Positive values indicate that the intervention
resulted in an increase of the corresponding traffic safety indicator, while
negative values are associated with a decrease in the corresponding traffic
safety indicator. Thus, the value 0.042363 in Table 4.1 indicates a slight
permanent relative increase in the risk component of the number of
accidents. If this value was significant, it would indicate an increase in the
number of accidents at the time point at which the alcohol law was intro-
duced. The fact that some observations in Table 4.3 are missing is due to
the fact that the Mulder Law was introduced within the last 10 years. 
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Time unit Lead (units) Estimates of coefficients

Accidents Victims 
 Accident Fatalities 
 Victim

Y 3 0.042363 0.005597 0.057084

Y 5 0.084330 0.005751 0.059915

Y 10 0.066302 0.004015 0.054438

Q 12 -0.097782 -0.006697 0.044883

Q 20 -0.098809 -0.006559 0.046923

Q 40 -0.092517 -0.006965 0.044060

M 36 -0.012037 -0.012914 0.002874

M 60 -0.008473 -0.012578 0.004251

M 120 0.000836 -0.013501 0.004696

Table 4.1. Estimates of coefficients (level changes) due to the alcohol law
on level components for Accidents, Victims/Accident and Fatalities/Victim in
state space. For more information see explanation on page 19.

Time unit Lead (units) Estimates of coefficients

Accidents Victims 
 Accident Fatalities 
 Victim

Y 3 0.007556 0.012203 0.087772

Y 5 0.044960 0.012601 0.087893

Y 10 0.031894 0.010919 0.088046

Q 12 0.077444 0.003290 -0.038024

Q 20 0.077247 0.003404 -0.037288

Q 40 0.076404 0.002857 -0.045700

M 36 0.060929 0.005483 0.001025

M 60 0.061250 0.005688 -0.001087

M 120 0.061067 0.005126 -0.004251

Table 4.2 Estimates of coefficients (level changes) due to the seat belt law
on level components for Accidents, Victims/Accident and Fatalities/Victim in
state space. For more information see explanation on page 19.

Time unit Lead (units) Estimates of coefficients

Accidents Victims 
 Accident Fatalities 
 Victim

Y 3 -0.011283 0.005636 0.040535

Y 5 -0.036550 0.006007 0.037103

Y 10 - - -

Q 12 0.023712 0.000733 0.043955

Q 20 0.023821 -0.000080 0.041790

Q 40 - - -

M 36 0.003289 0.007349 0.066259

M 60 0.008918 0.006800 0.065327

M 120 - - -

Table 4.3 Estimated coefficients (level changes) due to the Mulder Law on
level components for Accidents, Victims/Accident and Fatalities/Victim in
state space. For more information see explanation on page 19.
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The forecasts for 10, 5 and 3 years ahead are compared to annual
observations. To this end, forecasts based on quarterly and monthly data
were aggregated for accidents (Figure 4.1) and averaged for the other two
outcomes (Figure 4.2 and Figure 4.3). A quick inspection reveals that the
accuracy of the prognosis decreases as time proceeds. This is an obvious
property; longer term prognoses are generally worse compared to short
term prognoses. 

Furthermore, it seems that the prognosis based on quarterly data is
generally (no formal proof, hypothesis based on observations) better than
the prognosis based on annual data and as good as the prognosis based on
monthly data. In this case ‘better' means closer to the observed annual
data. The parameter estimates for the intervention effects in Tables 4.1
(alcohol law) 4.2 (seat belt law) and 4.3 (Mulder Law) suggest a similar
conclusion. The ‘sign' patterns differ substantially between annual and
monthly data. This last fact by itself could be caused by the fact that the
resolution of the annual data is not enough for the interventions, as they are
not introduced at the beginning of years. A clear example is the introduction
of the alcohol law in November 1974 and the seat belt law in June 1975. It
is difficult to support the assumption that all development in 1974 can be
attributed to the alcohol law, as it was in force only in the last two months. If
instead the intervention time point is chosen to be 1975, then its effects can
hardly be distinguished from those of the seat belt law. To some extent this
phenomenon is also relevant for quarterly data, but does not seem to have
that much influence in that case. 

In Figure 4.2 it can be seen that the ratio of the number of victims to the
number of accidents started to increase in the beginning of the 1990s. The
reason for this is not understood nor has it been explained by any of the
relevant models excluding the last 10 years as of 1989. This can be seen by
the substantial difference between the observed ratios and the prognosed
ratios of all models excluding the last 10 years as of 1989. Although the
upsurge resembles a similar upsurge starting in 1965, it is much more
extensive and continues over a longer period of time. A possible
explanation could be a selective change in the level of accident registration,
resulting in police reporting of more serious accidents, in this case
accidents with more victims. No proof of this is available. This change in
registration could hardly explain the sustained and quite systematic
increase for the first few years after its onset. Another explanation might
have been the introduction of the Mulder Law, as it was introduced
approximately at the same time as the onset of the increase. Although no
definitive conclusions can be drawn from this study, estimated coefficients
for Mulder Law on the level component of the victims per accident in
Table 4.3 do not support such an effect either. This intervention also cannot
explain the sustained increase for the first few years after its onset.
Noteworthy is that even in this case, where no model seems to yield good
prognoses 10 years ahead, the monthly and quarterly data seem to result in
better prognoses than the annual data. 

In Figure 4.3 the development of the number of fatalities per victim is
shown. It can be seen that the prognosis based on the annual development
excluding the last 10 years fails to predict the last 10 years rather severely
compared to the others. This result could be interpreted as resulting from a
further decrease in the trend in the last decade, suggesting that the ratio
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would have followed the annual development if no change had taken place.
However, both the results for monthly and quarterly analysis do not reveal
this effect. It is likely that the lack of a seasonal pattern in the model for
annual development is involved in this difference. 

If parameter significance was given it would be possible to assess the
effects of the three interventions from Tables 4.1, 4.2, and 4.3. 

The results given in those tables seem to suggest to disregard the analysis
based on annual data as the results of the quarterly and monthly based
analysis seem to be more in line with each other and, as was already noted,
the quarterly and monthly based models are better suited to fit the
interventions that all took place somewhere in the middle of a year. Each
coefficient in the tables should be tested for significance first, but this has
not been done yet. The results are also subject to changes in the time
points at which interventions took place. 

From the actual estimates it should be noted that all coefficients seem to be
quite stable with respect to varying the length of the estimation period (as
indicated by ‘lead' in the tables). The magnitude of the parameters should
be compared to the level components or may be expressed as relative
changes in either the level components or the real life outcomes the
components are designed for. However, coefficients can be compared on a
per column basis in the tables. That is, between other interventions over the
same level components. If anything can be concluded from the results it
would be the following: 

- The analysis based on quarterly data seems to give the most stable
results in the sense that parameter estimates seem to be less sensitive
to the length of the period used for estimation, as indicated by the lead.
This does not necessarily indicate that analysis based on quarterly data
is better than analysis based on monthly or annual data. 

- Since the majority of the parameters in the third and fourth column of
Table 4.1 are negative while those in the fifth column are all positive, the
introduction of alcohol law decreased both the number of accidents and
the number of victims per accident, but did not decrease the number of
fatalities per victim. 

- Similarly inspecting the signs of the parameter values in Table 4.2, the
seat belt law only had a beneficial effect on the number of fatalities per
victim. Note that both interventions took place in a relatively short time
frame; therefore, results are likely to be entangled. In this case it would
be very advantageous to know in advance what relative benefits should
occur and test this relative effect, both in terms of timing and in terms of
magnitude. Note that the effects of the seat belt law and the alcohol law
on the ratio of the number of fatalities to victims almost level out in the
10 year lead analysis of both monthly and quarterly data. As the alcohol
law was introduced ahead of the seat belt law, this means that the ratio
went up just ahead of the seat belt law. It is not clear how this
phenomenon is to be explained. In the case of the number of accidents
and the ratio of the number of victims to accidents, the development was
reversed: first a shift down and then a (smaller) shift up. In all cases it is
unclear how to interpret these developments. One explanation might be
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that the up or down shifts at the time of the seat belt interventions were
not related to the introduction of the seat belt law at all. This could mean
that the effects turn out to be different when another time point for the up
shift is chosen. This suggests that the estimated effects of the alcohol
law are sensitive to such timing issues. This is an issue that should be
resolved. 

The Mulder Law does not seem to have had a beneficial effect on any of
the outcomes. 

4.3. Conclusion

This study shows moderate success of the state space approach by Harvey
& Durbin (1986) in determining the effect of various traffic safety measures,
although no definitive conclusions can be drawn. Other features of the state
space approach, such, as prognosis have not explicitely been addressed in
this study. 
On the basis of this study it seems reasonable to conclude that it is crucial,
in disentangling the effects of measures, to either be able to quantify as
many properties of the interventions in terms of effectiveness as possible,
or alternatively be able to estimate those properties. Two very important
properties are the timing and, more generally, the development over time of
the effects. Ideally both approaches, estimation, and quantification should
be taken. Mis-specification of the shape and timing may lead to biased
estimates of effects of measures. 
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5. Conclusions and recommendations

5.1. Conclusions

In this study some statistical issues involved in the simultaneous analysis of
accident-related outcomes (such as the number of victims, fatalities or
accidents) of the traffic process were studied. The main focus of this study
was on estimation and how to deal with the supposed covariation of the
outcomes. Correction for covariation is needed in order to enhance the
statistical reliability of techniques applied to the simultaneous analysis of
accident-related outcomes. The scope of techniques is not restricted to the
analysis of time dependent data. 

Estimates of the covariances of normal approximations of joint distributions
were derived in this study. This has been done for the following cases: 
a. The total number of accidents, victims and fatalities in a certain class.

Examples of classes are monthly data, car-only accidents. 
b. The logarithm of the total number of accidents, victims and fatalities in a

certain class. 
c. The logarithm of the total number of accidents, the logarithm of the ratio

of the number of victims to the number of accidents, the logarithm of the
ratio of the number of fatalities to the number of victims. 

The results are listed in Table 3.2 in Chapter 3, details are described in the
Appendix A.1 and A.2. The alternative to normal approximations, so-called
‘exact' results were not studied. 

The following conclusions are drawn from Chapter 3 and the Appendix:

- It is possible to derive relatively simple expressions for the variances
and covariances of (logarithms and ratios of) accidents and victim
counts. The results are in Table 3.2. Some information needed to
compute estimates of the covariance matrices may not be available over
a longer period of time. 

- When it is intended to analyse traffic unsafety outcomes like accidents,
victims and fatalities or any of the other combinations as mentioned
above simultaneously, all three unsafety outcomes have to be used:
each unsafety outcome has unique information that cannot be estimated
from the other two outcomes. 

- It turns out that the logarithm of the total number of accidents is
(approximately) uncorrelated to the others. 

- The quality of the estimates is evaluated using samples of real life data
from the Netherlands. The following aspects have been studied:
- simulation studies based on real life data support results; deviations

from the assumptions do not have serious consequences. More
results are in Appendix A.3. 

- the approximation of the logarithm needed when log-numbers are
analysed is studied for accidents only. In practice problems are
unlikely when counts are higher than approximately 30. 



SWOV Publication R-2002-24 25

The following conclusions are drawn from Chapter 4:

- The trial study shows moderate success of the state space approach by
Harvey & Durbin (1986) in determining the effect of various traffic safety
measures, although no definitive conclusions can be drawn. 

- The trial study suggests that it is better to analyse quarterly or even
monthly data than annual data, even if annual data need to be predicted. 

- The estimated coefficients in the trial study show differentiated effects of
the alcohol law and seat belt law. Both interventions took place in a
rather short time frame. It is essential to accurately determine the
timepoint at which each of the interventions took place and, if possible,
to determine the relative effects the intervention should have on the
relevant components of the state space. This would allow for a better
determination of the timing of the interventions and would allow for
better disentangling of the intervention effects. 

5.2. Recommendations

Based on the results of this study it can be recommended not to use
so-called Poisson approximations of the variance of for instance the
number of victims in a year by estimating its value using the observed
number of victims. The variance may be substantially larger. The amount of
‘extra' variance depends on the distribution of the number of victims per
accident. When more victims tend to occur in certain types of accident the
variance of the number of victims tends to be higher. It seems better to
approximate this variance by the sum of the square of the number of
victims per accident rather than by the sum of the number of victims per
accident. 

This figure however may not be available for older observations, as data on
the accidents level may not be available for older accidents. The few
examples studied here do not indicate a substantial change in the ratio of
for instance the sum of the square of the number of victims per accident to
the sum of the number of victims per accident over the last 25 years. This
suggests that it may be possible to estimate this ratio and use the
(recorded) total number of victims instead. 

In multivariate analysis of the traffic safety indicators investigated in this
report it is recommended to use the covariances as described in Table 3.2. 
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Appendix Technical details

A.1. Derivation for counts

This section describes how the covariance (matrix) between the number of
injury accidents and victims is derived. It is assumed that a basic
simplification can be used: the number of victims per accident is equally
distributed for all accidents, although it may be possible to relax this
assumption. No further assumptions on the shape have been made. The
derivation extends the result in Feller (1968). 

A.1.1. The expected value and variance of the number of accidents and victims

Define N as the number of accidents in a certain period of time. N is
assumed to be Poisson distributed with parameter �. 

The stochastic variables Vi (i = 1,...,N) denote the number of victims in
accident i. The Vi are assumed to be independently identically distributed.
The distribution of the Vi has characteristic function 3(t) with expected
value µ. The symbol vi is used to denote a realisation of the number of
victims in accident i. Similarly, the symbol fi is used to denote a realisation
of the number of fatalities in accident i. 

Let V = �N
i = 1 Vi, thus V is a sum over a random number (N) of accidents.

Define -(t) the characteristic function of V then 

-(t) = E (ei t V) = E (E (ei t V|N ))

where i is the imaginary number (i2 = -1). 
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Using ex = ��n = 0 (x
n)
n! the result is (Feller, 1968, page 286): 

-(t) = e-�+(�3(t)) = e�(3(t)-1) (A.2)
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As E(|V |3) exists, E(V ) = i-1
-1(0) and E(V 2) = --2(0), using 

3(0) = 1, -(0) = 1, 31(0) = i E(Vk) = i µ and 32(0) = -E(Vk
2), we get the

following expected value for V: 

E(V ) = i-1[�31(t)-(t)]t = 0 = i-1�31(0) = �µ  (A.3)

This can (no surprise here) be estimated using: 
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The variance of V is 12(V ) = E(V 2) - E2(V ), thus 

E(V 2) = - [�32(t)-(t)+ (�31(t))2
-(t)]t = 0 = - �32(0)-(�31(0))2

resulting in 

1
2(V ) = �E(Vk

2). (A.5)

This can be estimated using
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The expected value and the variance of the number of fatalities can be
derived in the same way. 

A.1.2 The covariance between the number of accidents and the number of victims

The covariance between the number of injury accidents and the number of
victims is more complicated. Its derivation is based on the same
characteristic function argument as used above. The characteristic function
of the random vector (N,V) is defined as 

-(s,t) = E(eisN + itV) � E( f(N) × g(V ))

using the same conditional expectation trick: 

E(E( f(N) × g(V )|N)) = E( f(N) E(g(V )|N))

then using (A.1) we get 
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In order to derive the covariance, E(N) = � by the Poisson law and
E(V ) = �µ is already available in (A.3). Needed is: 
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because -(0,0) = 3(0) = 1, 31(0) = iµ  it follows that 
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and

E(N V) = �µ  (�+1) (A.10)

and thus 

Cov(N,V ) = �2µ  + �µ  - ��µ  = �µ (A.11)

A.1.3. The covariance between the number of victims and the number of fatalities

Let the random variable Fi be the number of fatalities in accident i. Let
F = �N

i = 1 Fi. Define �(s,t) the characteristic function of the random vector
(V,F) and %(s,t) the characteristic function of the random vector (Vi,Fi), thus
for each i and j, (Vi,Fi) is independent of (Vj,Fj) if i g j but the Vi and Fi are
not independent, as almost surely Vi � Fi. Then 

�(s,t) = E(eitV + isF) = E(E(eitV + isF|N )),
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then similar to (A.1), 
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Similar to (A.10) it follows: 

E(V F) = �2E(Fi) E(Vi) + �E(Fi Vi)  (A.14)

and: 

Cov(V,F) = �E(Fi Vi). (A.15)

This can be estimated with 
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A.2. Derivation for the logarithm of counts

A.2.1. The expected value and variance of the logarithms of number of accidents and victims

Unfortunately, it is not possible to derive an explicit characteristic function
as simple as the one given in equation (A.2) in the case of the logarithm of
the number of accidents and victims. For that reason, approximations need
to be made in order to get a useful expression for the covariance between
the logarithm of the number of accidents and victims. This is done using a
method often called the ‘delta' method. The basic idea is that the logarithms
of N and V are approximated by a series expansion of order k (usually order
one) about their expected values. This would mean that log(N) is
approximated by a polynomial in N of order k, say 
log(N) � a0 + a1(N-�) + ..... + ak(N-�)k. 

To be precise, a first order approximation about the expected value (�) of
the number of accidents is: 
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This makes the expected value of this first order approximation equal to
log(�): E(log(N)) � log(�). Similarly, E(log2(N)) � 1
� + log2(�) which
together makes 

 (A.17)� (lo g ( ))σ
λ

2 1
N ≈

where � means variance of the first order approximation. 

In the case of log(V ), approximations are about the expected value �µ of V:
log(N) � (log(�µ)-1) + V
�µ. For that reason E(log(V )) � log(�µ) and using
(A.5) 
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Results for fatalities are derived in a similar way. 

Obviously, both results for the logarithmic case are approximations. From
Figure A.1 it can be seen that the relative approximation error for the
variance of the number of accidents may turn out substantial if � is less
than about 20-30. Similar results will hold for victims and fatalities. 

Figure A.1. The relative error of the variance estimate of the logarithm of a
Poisson distributed random variable as a function of its expected value �
(horizontal axis). The relative error is computed as (exact-estimate)/exact. 

A.2.2. The covariance between the logarithm of the number of injury accidents and the logarithm of
the number of victims and fatalities

Extending the first order approximations of both log-accident counts and
log-victims, it can be seen that 
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Expressions like E(Ni Vj), E(Ni) and E(Vi) can be evaluated similar to (A.9)
using higher order derivatives of the characteristic function in (A.8). 
The resulting equations are derived in Table A.2. They are based on first
order approximations. Table A.1 gives an explanation of abbreviations used
in Table A.2.

Number of Stochastic symbol Realisation Usually available Abbreviation

Accidents (acc) N n Yes n 

Victims in accident i Vi vi No 

Fatalities in accident i Fi fi No 

Sum over all accidents 
of the number of Stochastic symbol Estimate Usually available Abbreviation

Victims (vic) V �
n

i = 1 vi Yes �v

Fatalities (fat) F �
n

i = 1 fi Yes �f

Sum over all accidents 
of the square of the number of Expected value Estimate Usually available Abbreviation

Victims �E(Vi
2) �

n
i = 1 vi

2 No �v 2

Fatalities �E(Fi
2) �

n
i = 1 fi

2 No �f 2

Sum over all accidents of the
cross product of the numbers of Expected value Estimate Usually available Abbreviation

Victims and fatalities �E(Vi Fi) �
n

i = 1 vi fi No �f v 

Table A.1. Abbreviations used in the derived equations for variances and covariances and
estimates.
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Results based on counts

Variance of Value Estimate

acc � n

vic �E(Vk
2) �v 2

fat �E(Fk
2) �f 2

Covariance of Value Estimate

acc & vic �E(Fk Vk) �v

acc & vic �E(Vk) �f

vic & fat �E(Fk) �f v

Results based on logarithms of counts

Variance of Value Estimate

acc 1
� 1
n

vic E(Vk
2)
�E(Vk)

2 �v2
(�v)2

fat E(Fk
2)
�E(Fk)

2 �f 2
(�f )2

Covariance of Value Estimate

acc & vic 1
� 1
n

acc & fat 1
� 1
n

vic & fat E(Fk Vk)
(� E(Fk) E(Vk)) �f v
(�v × �f )

Results based on logarithms of ratios of counts

Variance of Value Estimate

acc
vic 1
2(V )
�E(V )2 �v 2
(�v)2  - 1/n

fat
vic 1
2(F)
�E(F)2 -

2Cov(F,V )
(� E(F) E(V )) +
1

2(V )
�E(V )2 

�f 2
(�f )2 + �v2
(�v)2 	
2�f v
(�v�f )

Covariance of Value Estimate

acc & acc
vic 0 0

acc & fat
vic 0 0

acc
vic &
fat
vic

Cov(F,V )
(� E(F) E(V )) -
1

2(V )
�E(V )2

(�f v)
(�v�f ) 	 (�v2)
(�v)2

Table A.2. Derived equations for variances and covariances and estimates.

A.3. Simulation studies

To support the findings, a simulation study was conducted. From injury
accidents that occurred in the Netherlands in the years 1980 - 1999 the
number of victims (at least one) and the number of fatalities was recorded
for each individual accident as well as the month and year it occurred. A
separate simulation was done using accidents that only involved cars, one
that involved only fatal accidents and one that involved fatal car-only
accidents. All were performed by selecting with replacement a random
number of accident records from a specific month. The number to be
selected was a random number sampled from a Poisson distribution with
expected value equal to the number of accidents that actually occurred that
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particular month. Such a selection should look similar to what could have
happened that month. For each sample created that way the total number
of accidents, victims and fatalities have been computed, as well as some
other statistics. Covariances have been computed using a large number of
such samples (at least 40,000) that were created that way. 

It should be noted that this sampling scheme implies a Poisson distribution
of the number of accidents and that, therefore, the following checks on the
estimation of the variance of the number of accidents are more or less, but
not intended to be, a check on the performance of the random number
generator. 

Table A.3 compares results for car-only simulations with all vehicle type
simulations. It seems that the results are similar except for log-fatalities.
This is not well understood, at least not yet. It may be that this has at least
something to do with the approximation, as it does not occur in the cases of
var(fat) and relatively little fatalities occur in this case. See also Figure A.1. 

Measure Only cars All accidents 

Var(acc) 0.02246 0.02160 

var(vic) 0.02216 0.02266 

var(fat) 0.02210 0.02261 

cov(acc,vic) 0.02394 0.02334 

cov(acc,fat) 0.13625 0.09611 

cov(vic,fat) 0.06753 0.06803 

var(log(acc)) 0.02257 0.02168 

var(log(vic)) 0.02215 0.02272 

var(log(fat)) 0.05702 0.02297 

cov(log(acc),log(vic)) 0.02397 0.02343 

cov(log(acc),log(fat)) 0.13783 0.09549 

cov(log(vic),log(fat)) 0.04260 0.06740 

Table A.3. Standard deviations of the relative differences (ê-e)
ê between
simulation sample estimates of the measures ‘ê’ and computed estimates
‘e’, 40,000 simulations, 1980-1999.

A.3.1. Graphical comparison of derived results and simulations

Besides computing covariances between the number of accidents, victims
and fatalities from the samples and comparing those to the derived
estimates, it may be wise to look at how well the covariances describe the
(co)variability of the data. 

At least from one point of view (i.e., the fact that no less fatalities can occur
than fatal accidents) it can be argued that the applicability of the covariance
estimates as a measure of covariability is limited. 

This section is intended to indicate this problem. To this end the data of
only 1 month (December 1999) out of 240 are used to compare the derived
covariance results with the sampled data in a graphical way. 
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It is expected that the description of the variability as derived in this
document works best when numbers are larger. At the one end (with the
larger numbers) the number of injury accidents and the number of victims
are compared. At the other end the number of fatal car accidents and the
number of fatalities are compared. 

From Figure A.2 it can be seen that the covariance between the number of
victims (horizontal) and the number of injury accidents is substantial. One
could be tempted to conclude that this means that one could use only one
to describe both. This may not be the correct conclusion. Changes over
time are the subject of study and therefore it is necessary to know how
much (co)variation can be expected by nature. 

Figure A.2 Density plot of frequencies of the number of victims (horizontal)
and the number of injury accidents from the samples of injury accidents.
The inside of the ellipsis is the 95% confidence region based on a
multivariate normal distribution with expected values and covariance from
Table A.2.

From Figure A.3 it can be seen that the confidence region extends into the
zone in which more fatal accidents ‘occur' than fatalities. Based on the
approximation there would be a chance of about 0.16 that more fatal
accidents occur than the number of fatalities. Also, variance seems to be
spread more than is estimated (see Tables A.2, A.3). This phenomenon is
less clear in earlier months in which more accidents and fatalities occurred.
How serious the consequences of this spread are has not been studied yet. 
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Figure A.3. Density plot of frequencies of the number of fatalities (horizontal)
and the number of fatal accidents from the samples of fatal car-only
accidents. The inside of the ellipsis is the 95% confidence region based on a
multivariate normal distribution with expected values and covariance from
Table A.2.

A.3.2. Some interpretations on the derived covariance matrices

Using Table 3.2 it is possible to study the covariance matrices (of
logarithms) of the number of accidents, victims and fatalities in more detail.

The covariance matrix for counts

The estimate of the covariance matrix � can be computed as follows. For
each accident i denote the vector ci = (1,vi,fi)1 of counts of accidents ( = 1),
victims and fatalities involved in the accident. 

Then

� '.Σ =
=
∑ c ci i
i

n

1

The components ci ci1 are rank-one matrices. Therefore it may in principle
be possible in some cases to represent the space of accidents, victims and
fatalities in less than three dimensions. If this were possible, it would mean
that not all three components need to be explained if the safety develop-
ment is to be analysed, simplifying models. In order for this to be true
however, it would require limited variability in the vectors ci. For instance
fi � 0 for all accidents would be one obvious case. Usually, however, there
will not be a clear simplification available. 
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The covariance matrix for log-counts

Compiling the results for Table 3.2 on logarithms the following is found
(approximately): 

 (A.18)
1

1 1 1

1

1

2

2

2

2

λ
E V

E V

E F V

E F E V
E F V

E F E V

E F

E F

( )

( )

( )

( ) ( )
( )

( ) ( )

( )

( )























No simplifications have been found here besides the ones that will apply in
the previous (count based) matrix. 

When, instead of logarithms of the number of accidents, injuries and
fatalities the logarithms of the number of accidents, the number of injuries
divided by the number of accidents and the number of fatalities divided by
the number of injuries are modelled, the following covariance matrix is
obtained (approximately): 

 (A.19)

1
0 0

0
1

0
2

2

2

2

2

2

2

2

2

2

2

λ

λ λ λ λ

λ λ λ λ λ

E V

E V

E F V

E F E V
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E V
E F V

E F E V

E V

E V

E F

E F

E F V

E F E V

E V

E V

( )
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( ) ( )

( )
( )

( )

( ) ( )
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( )

( )

( )

( )

( ) ( )
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− −

− − +
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


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This matrix can be rearranged:

 (A.20)
1

1 0 0

0

0
2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

λ
σ σ

σ σ σ

( )
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( )
( ) ( )
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( )

( )
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( )
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( ) ( )

( )
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V

E V

C o v F V

E F E V

V

E V
C o v F V

E F E V

V

E V

F

E F

C o v F V

E F E V

V

E V

−

− − +























Hence - at least in first order approximation - the logarithm of number of
accidents and the logarithm of the ratio of either accidents to injuries or
injuries to fatalities are uncorrelated. 

Using data of 1980 through 1999 car-only accidents), the quantities E(V 2),
E(F 2) and Cov(F,V) as well as E(V ), E(F) have been estimated. 

For practical purposes however, first estimates for the quantities
1

2(V )
E2(V ), Cov(F,V )
(E(F) E(V )) � 12(V )
E2(V ) and 12(F)
E2(F) �
2Cov(F,V )
(E(F) E(V )) + 12(V )
E2(V ) are graphed in the Figures A.4,
A.5 and A.6 respectively. These are the relevant components of the
covariance matrix (A.15) multiplied by �. 
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Figure A.4. Development of 12(V)/E 2(V) over time for car-only accidents.
Annual data: uninterrupted line, Quarterly data: uninterrupted grey line,
Monthly data: dashed line. The peak in the beginning of 1993 is probably
entirely caused by a number of fog related pile-ups in the first few hours of
1993.

Figure A.5. Development of Cov(F,V)/(E(F) E(V)) - 12(V)/E 2(V) over time
for car-only accidents. Annual data: uninterrupted line, Quarterly data:
uninterrupted grey line, Monthly data: dashed line.

The increasing tendency in Figure A.6 seems to be caused by 12(V )
E2(V )
only, as Figures A.4 and A.5 do not observe this tendency. 

One option to explain this phenomenon could have been an actual increase
in the variance of the number of fatalities per accident while the mean
number of fatalities per accident approximately remains the same. This
however is contradicted by the results in Figure A.7. In this figure, the
indexed annual development over time of E2(F) and 12(F) are graphed. 
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Figure A.6. Development of 12(F)/E2(F)�2Cov(F,V)/(E(F) E(V)) +
1

2(V)/E 2(V) over time for car-only accidents. Annual data: uninterrupted
line, Quarterly data: uninterrupted grey line, Monthly data: dashed line.

It shows that both components decline but E2(F) declines more rapidly so
their ratio actually increases. Apparently, somehow the square of the
average number of fatalities per accident dropped steeper than the average
of the square of the number of fatalities per accident. 

One consequence of this is that it should be checked whether or not the
variance can be approximated using an estimate that is not dependent on
not generally available components like 12(F). 

Figure A.7. Annual indexed (1980) development of E2(F) (uninterrupted line)
and 12(F) (dashed line) over time.



     


